include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,4,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,4,6,6}*1728c
if this polytope has a name.
Group : SmallGroup(1728,47409)
Rank : 6
Schlafli Type : {3,2,4,6,6}
Number of vertices, edges, etc : 3, 3, 4, 12, 18, 6
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,4,6,3}*864, {3,2,2,6,6}*864b
3-fold quotients : {3,2,4,2,6}*576
4-fold quotients : {3,2,2,6,3}*432
6-fold quotients : {3,2,4,2,3}*288, {3,2,2,2,6}*288
9-fold quotients : {3,2,4,2,2}*192
12-fold quotients : {3,2,2,2,3}*144
18-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := ( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)(13,31)
(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(40,58)(41,59)(42,60)
(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)(53,71)
(54,72)(55,73)(56,74)(57,75);;
s3 := ( 7,10)( 8,11)( 9,12)(16,19)(17,20)(18,21)(22,31)(23,32)(24,33)(25,37)
(26,38)(27,39)(28,34)(29,35)(30,36)(43,46)(44,47)(45,48)(52,55)(53,56)(54,57)
(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,70)(65,71)(66,72);;
s4 := ( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)(23,27)
(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)(47,48)(49,52)
(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)(69,71)
(74,75);;
s5 := ( 4,41)( 5,40)( 6,42)( 7,47)( 8,46)( 9,48)(10,44)(11,43)(12,45)(13,50)
(14,49)(15,51)(16,56)(17,55)(18,57)(19,53)(20,52)(21,54)(22,59)(23,58)(24,60)
(25,65)(26,64)(27,66)(28,62)(29,61)(30,63)(31,68)(32,67)(33,69)(34,74)(35,73)
(36,75)(37,71)(38,70)(39,72);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3, s2*s3*s4*s3*s2*s3*s4*s3,
s5*s3*s4*s3*s4*s5*s3*s4*s3*s4, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(75)!(2,3);
s1 := Sym(75)!(1,2);
s2 := Sym(75)!( 4,22)( 5,23)( 6,24)( 7,25)( 8,26)( 9,27)(10,28)(11,29)(12,30)
(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,37)(20,38)(21,39)(40,58)(41,59)
(42,60)(43,61)(44,62)(45,63)(46,64)(47,65)(48,66)(49,67)(50,68)(51,69)(52,70)
(53,71)(54,72)(55,73)(56,74)(57,75);
s3 := Sym(75)!( 7,10)( 8,11)( 9,12)(16,19)(17,20)(18,21)(22,31)(23,32)(24,33)
(25,37)(26,38)(27,39)(28,34)(29,35)(30,36)(43,46)(44,47)(45,48)(52,55)(53,56)
(54,57)(58,67)(59,68)(60,69)(61,73)(62,74)(63,75)(64,70)(65,71)(66,72);
s4 := Sym(75)!( 4, 7)( 5, 9)( 6, 8)(11,12)(13,16)(14,18)(15,17)(20,21)(22,25)
(23,27)(24,26)(29,30)(31,34)(32,36)(33,35)(38,39)(40,43)(41,45)(42,44)(47,48)
(49,52)(50,54)(51,53)(56,57)(58,61)(59,63)(60,62)(65,66)(67,70)(68,72)(69,71)
(74,75);
s5 := Sym(75)!( 4,41)( 5,40)( 6,42)( 7,47)( 8,46)( 9,48)(10,44)(11,43)(12,45)
(13,50)(14,49)(15,51)(16,56)(17,55)(18,57)(19,53)(20,52)(21,54)(22,59)(23,58)
(24,60)(25,65)(26,64)(27,66)(28,62)(29,61)(30,63)(31,68)(32,67)(33,69)(34,74)
(35,73)(36,75)(37,71)(38,70)(39,72);
poly := sub<Sym(75)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s2*s3*s2*s3*s2*s3*s2*s3,
s2*s3*s4*s3*s2*s3*s4*s3, s5*s3*s4*s3*s4*s5*s3*s4*s3*s4,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5 >;
to this polytope