include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {12,6,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {12,6,6,2}*1728f
if this polytope has a name.
Group : SmallGroup(1728,47409)
Rank : 5
Schlafli Type : {12,6,6,2}
Number of vertices, edges, etc : 12, 36, 18, 6, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,6,2}*864d
3-fold quotients : {4,6,6,2}*576a, {12,6,2,2}*576c
6-fold quotients : {2,6,6,2}*288a, {6,6,2,2}*288b
9-fold quotients : {4,2,6,2}*192, {4,6,2,2}*192a
12-fold quotients : {6,3,2,2}*144
18-fold quotients : {4,2,3,2}*96, {2,2,6,2}*96, {2,6,2,2}*96
27-fold quotients : {4,2,2,2}*64
36-fold quotients : {2,2,3,2}*48, {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)( 23, 26)
( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)( 49, 52)
( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)( 60, 90)
( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)( 68, 98)
( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)( 76,106)
( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);;
s1 := ( 1, 58)( 2, 59)( 3, 60)( 4, 55)( 5, 56)( 6, 57)( 7, 61)( 8, 62)
( 9, 63)( 10, 76)( 11, 77)( 12, 78)( 13, 73)( 14, 74)( 15, 75)( 16, 79)
( 17, 80)( 18, 81)( 19, 67)( 20, 68)( 21, 69)( 22, 64)( 23, 65)( 24, 66)
( 25, 70)( 26, 71)( 27, 72)( 28, 85)( 29, 86)( 30, 87)( 31, 82)( 32, 83)
( 33, 84)( 34, 88)( 35, 89)( 36, 90)( 37,103)( 38,104)( 39,105)( 40,100)
( 41,101)( 42,102)( 43,106)( 44,107)( 45,108)( 46, 94)( 47, 95)( 48, 96)
( 49, 91)( 50, 92)( 51, 93)( 52, 97)( 53, 98)( 54, 99);;
s2 := ( 1, 10)( 2, 12)( 3, 11)( 4, 16)( 5, 18)( 6, 17)( 7, 13)( 8, 15)
( 9, 14)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 37)( 29, 39)( 30, 38)
( 31, 43)( 32, 45)( 33, 44)( 34, 40)( 35, 42)( 36, 41)( 47, 48)( 49, 52)
( 50, 54)( 51, 53)( 55, 64)( 56, 66)( 57, 65)( 58, 70)( 59, 72)( 60, 71)
( 61, 67)( 62, 69)( 63, 68)( 74, 75)( 76, 79)( 77, 81)( 78, 80)( 82, 91)
( 83, 93)( 84, 92)( 85, 97)( 86, 99)( 87, 98)( 88, 94)( 89, 96)( 90, 95)
(101,102)(103,106)(104,108)(105,107);;
s3 := ( 1, 2)( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)( 22, 23)
( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)( 46, 47)
( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)( 70, 71)
( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)( 94, 95)
( 97, 98)(100,101)(103,104)(106,107);;
s4 := (109,110);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(110)!( 4, 7)( 5, 8)( 6, 9)( 13, 16)( 14, 17)( 15, 18)( 22, 25)
( 23, 26)( 24, 27)( 31, 34)( 32, 35)( 33, 36)( 40, 43)( 41, 44)( 42, 45)
( 49, 52)( 50, 53)( 51, 54)( 55, 82)( 56, 83)( 57, 84)( 58, 88)( 59, 89)
( 60, 90)( 61, 85)( 62, 86)( 63, 87)( 64, 91)( 65, 92)( 66, 93)( 67, 97)
( 68, 98)( 69, 99)( 70, 94)( 71, 95)( 72, 96)( 73,100)( 74,101)( 75,102)
( 76,106)( 77,107)( 78,108)( 79,103)( 80,104)( 81,105);
s1 := Sym(110)!( 1, 58)( 2, 59)( 3, 60)( 4, 55)( 5, 56)( 6, 57)( 7, 61)
( 8, 62)( 9, 63)( 10, 76)( 11, 77)( 12, 78)( 13, 73)( 14, 74)( 15, 75)
( 16, 79)( 17, 80)( 18, 81)( 19, 67)( 20, 68)( 21, 69)( 22, 64)( 23, 65)
( 24, 66)( 25, 70)( 26, 71)( 27, 72)( 28, 85)( 29, 86)( 30, 87)( 31, 82)
( 32, 83)( 33, 84)( 34, 88)( 35, 89)( 36, 90)( 37,103)( 38,104)( 39,105)
( 40,100)( 41,101)( 42,102)( 43,106)( 44,107)( 45,108)( 46, 94)( 47, 95)
( 48, 96)( 49, 91)( 50, 92)( 51, 93)( 52, 97)( 53, 98)( 54, 99);
s2 := Sym(110)!( 1, 10)( 2, 12)( 3, 11)( 4, 16)( 5, 18)( 6, 17)( 7, 13)
( 8, 15)( 9, 14)( 20, 21)( 22, 25)( 23, 27)( 24, 26)( 28, 37)( 29, 39)
( 30, 38)( 31, 43)( 32, 45)( 33, 44)( 34, 40)( 35, 42)( 36, 41)( 47, 48)
( 49, 52)( 50, 54)( 51, 53)( 55, 64)( 56, 66)( 57, 65)( 58, 70)( 59, 72)
( 60, 71)( 61, 67)( 62, 69)( 63, 68)( 74, 75)( 76, 79)( 77, 81)( 78, 80)
( 82, 91)( 83, 93)( 84, 92)( 85, 97)( 86, 99)( 87, 98)( 88, 94)( 89, 96)
( 90, 95)(101,102)(103,106)(104,108)(105,107);
s3 := Sym(110)!( 1, 2)( 4, 5)( 7, 8)( 10, 11)( 13, 14)( 16, 17)( 19, 20)
( 22, 23)( 25, 26)( 28, 29)( 31, 32)( 34, 35)( 37, 38)( 40, 41)( 43, 44)
( 46, 47)( 49, 50)( 52, 53)( 55, 56)( 58, 59)( 61, 62)( 64, 65)( 67, 68)
( 70, 71)( 73, 74)( 76, 77)( 79, 80)( 82, 83)( 85, 86)( 88, 89)( 91, 92)
( 94, 95)( 97, 98)(100,101)(103,104)(106,107);
s4 := Sym(110)!(109,110);
poly := sub<Sym(110)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope