include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,6}*1728c
if this polytope has a name.
Group : SmallGroup(1728,47847)
Rank : 4
Schlafli Type : {6,12,6}
Number of vertices, edges, etc : 9, 72, 72, 8
Order of s0s1s2s3 : 4
Order of s0s1s2s3s2s1 : 2
Special Properties :
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
12-fold quotients : {6,4,2}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)(18,34)
(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);;
s1 := ( 1,13)( 2,14)( 3,16)( 4,15)( 7, 8)( 9,33)(10,34)(11,36)(12,35)(17,29)
(18,30)(19,32)(20,31)(23,24)(27,28);;
s2 := ( 2, 4)( 6, 8)(10,12)(13,33)(14,36)(15,35)(16,34)(17,25)(18,28)(19,27)
(20,26)(21,29)(22,32)(23,31)(24,30);;
s3 := ( 1, 2)( 5, 6)( 9,10)(13,14)(17,18)(21,22)(25,26)(29,30)(33,34);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(36)!( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)
(18,34)(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);
s1 := Sym(36)!( 1,13)( 2,14)( 3,16)( 4,15)( 7, 8)( 9,33)(10,34)(11,36)(12,35)
(17,29)(18,30)(19,32)(20,31)(23,24)(27,28);
s2 := Sym(36)!( 2, 4)( 6, 8)(10,12)(13,33)(14,36)(15,35)(16,34)(17,25)(18,28)
(19,27)(20,26)(21,29)(22,32)(23,31)(24,30);
s3 := Sym(36)!( 1, 2)( 5, 6)( 9,10)(13,14)(17,18)(21,22)(25,26)(29,30)(33,34);
poly := sub<Sym(36)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s3*s2*s1*s0*s1*s2*s3*s2*s1,
s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s0*s1*s2*s1*s2*s0*s1*s2*s1*s2*s0*s1*s2*s1*s2 >;
References : None.
to this polytope