include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,12}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,12}*1728n
if this polytope has a name.
Group : SmallGroup(1728,47870)
Rank : 4
Schlafli Type : {2,12,12}
Number of vertices, edges, etc : 2, 36, 216, 36
Order of s0s1s2s3 : 12
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {2,12,6}*432c
9-fold quotients : {2,12,4}*192c
12-fold quotients : {2,4,6}*144
18-fold quotients : {2,6,4}*96c
36-fold quotients : {2,3,4}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 7,15)( 8,17)( 9,16)(10,18)(11,27)(12,29)(13,28)(14,30)(20,21)
(23,31)(24,33)(25,32)(26,34)(36,37);;
s2 := ( 4, 6)( 7,11)( 8,14)( 9,13)(10,12)(16,18)(19,23)(20,26)(21,25)(22,24)
(28,30)(31,35)(32,38)(33,37)(34,36);;
s3 := ( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,26)(12,25)
(13,24)(14,23)(27,34)(28,33)(29,32)(30,31)(35,38)(36,37);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2,
s3*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!( 4, 5)( 7,15)( 8,17)( 9,16)(10,18)(11,27)(12,29)(13,28)(14,30)
(20,21)(23,31)(24,33)(25,32)(26,34)(36,37);
s2 := Sym(38)!( 4, 6)( 7,11)( 8,14)( 9,13)(10,12)(16,18)(19,23)(20,26)(21,25)
(22,24)(28,30)(31,35)(32,38)(33,37)(34,36);
s3 := Sym(38)!( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,26)
(12,25)(13,24)(14,23)(27,34)(28,33)(29,32)(30,31)(35,38)(36,37);
poly := sub<Sym(38)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3,
s3*s1*s2*s3*s2*s1*s2*s3*s2*s3*s1*s2*s3*s2*s1*s2*s3*s2,
s3*s2*s3*s2*s3*s2*s3*s2*s1*s2*s3*s2*s1*s2*s1*s2*s3*s2*s1*s2 >;
to this polytope