include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,6,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,6,4}*1728l
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 5
Schlafli Type : {6,6,6,4}
Number of vertices, edges, etc : 6, 18, 18, 12, 4
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,6,3,4}*864b
3-fold quotients : {2,6,6,4}*576f, {6,2,6,4}*576b
6-fold quotients : {2,6,3,4}*288, {3,2,6,4}*288b, {6,2,3,4}*288
9-fold quotients : {2,2,6,4}*192b
12-fold quotients : {3,2,3,4}*144
18-fold quotients : {2,2,3,4}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)( 20, 32)
( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)( 52, 64)
( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)( 60, 72)
( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)( 92,104)
( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)(124,136)
(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)(132,144)
(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)(164,176)
(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)(196,208)
(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)(204,216);;
s1 := ( 1, 13)( 2, 14)( 3, 15)( 4, 16)( 5, 21)( 6, 22)( 7, 23)( 8, 24)
( 9, 17)( 10, 18)( 11, 19)( 12, 20)( 29, 33)( 30, 34)( 31, 35)( 32, 36)
( 37, 49)( 38, 50)( 39, 51)( 40, 52)( 41, 57)( 42, 58)( 43, 59)( 44, 60)
( 45, 53)( 46, 54)( 47, 55)( 48, 56)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 73, 85)( 74, 86)( 75, 87)( 76, 88)( 77, 93)( 78, 94)( 79, 95)( 80, 96)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)(101,105)(102,106)(103,107)(104,108)
(109,121)(110,122)(111,123)(112,124)(113,129)(114,130)(115,131)(116,132)
(117,125)(118,126)(119,127)(120,128)(137,141)(138,142)(139,143)(140,144)
(145,157)(146,158)(147,159)(148,160)(149,165)(150,166)(151,167)(152,168)
(153,161)(154,162)(155,163)(156,164)(173,177)(174,178)(175,179)(176,180)
(181,193)(182,194)(183,195)(184,196)(185,201)(186,202)(187,203)(188,204)
(189,197)(190,198)(191,199)(192,200)(209,213)(210,214)(211,215)(212,216);;
s2 := ( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 11, 12)( 13, 17)( 14, 18)( 15, 20)
( 16, 19)( 23, 24)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)( 37, 77)
( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)( 45, 81)
( 46, 82)( 47, 84)( 48, 83)( 49, 89)( 50, 90)( 51, 92)( 52, 91)( 53, 85)
( 54, 86)( 55, 88)( 56, 87)( 57, 93)( 58, 94)( 59, 96)( 60, 95)( 61,101)
( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)( 69,105)
( 70,106)( 71,108)( 72,107)(109,113)(110,114)(111,116)(112,115)(119,120)
(121,125)(122,126)(123,128)(124,127)(131,132)(133,137)(134,138)(135,140)
(136,139)(143,144)(145,185)(146,186)(147,188)(148,187)(149,181)(150,182)
(151,184)(152,183)(153,189)(154,190)(155,192)(156,191)(157,197)(158,198)
(159,200)(160,199)(161,193)(162,194)(163,196)(164,195)(165,201)(166,202)
(167,204)(168,203)(169,209)(170,210)(171,212)(172,211)(173,205)(174,206)
(175,208)(176,207)(177,213)(178,214)(179,216)(180,215);;
s3 := ( 1,145)( 2,148)( 3,147)( 4,146)( 5,153)( 6,156)( 7,155)( 8,154)
( 9,149)( 10,152)( 11,151)( 12,150)( 13,157)( 14,160)( 15,159)( 16,158)
( 17,165)( 18,168)( 19,167)( 20,166)( 21,161)( 22,164)( 23,163)( 24,162)
( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)( 32,178)
( 33,173)( 34,176)( 35,175)( 36,174)( 37,109)( 38,112)( 39,111)( 40,110)
( 41,117)( 42,120)( 43,119)( 44,118)( 45,113)( 46,116)( 47,115)( 48,114)
( 49,121)( 50,124)( 51,123)( 52,122)( 53,129)( 54,132)( 55,131)( 56,130)
( 57,125)( 58,128)( 59,127)( 60,126)( 61,133)( 62,136)( 63,135)( 64,134)
( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)( 72,138)
( 73,181)( 74,184)( 75,183)( 76,182)( 77,189)( 78,192)( 79,191)( 80,190)
( 81,185)( 82,188)( 83,187)( 84,186)( 85,193)( 86,196)( 87,195)( 88,194)
( 89,201)( 90,204)( 91,203)( 92,202)( 93,197)( 94,200)( 95,199)( 96,198)
( 97,205)( 98,208)( 99,207)(100,206)(101,213)(102,216)(103,215)(104,214)
(105,209)(106,212)(107,211)(108,210);;
s4 := ( 1,110)( 2,109)( 3,112)( 4,111)( 5,114)( 6,113)( 7,116)( 8,115)
( 9,118)( 10,117)( 11,120)( 12,119)( 13,122)( 14,121)( 15,124)( 16,123)
( 17,126)( 18,125)( 19,128)( 20,127)( 21,130)( 22,129)( 23,132)( 24,131)
( 25,134)( 26,133)( 27,136)( 28,135)( 29,138)( 30,137)( 31,140)( 32,139)
( 33,142)( 34,141)( 35,144)( 36,143)( 37,146)( 38,145)( 39,148)( 40,147)
( 41,150)( 42,149)( 43,152)( 44,151)( 45,154)( 46,153)( 47,156)( 48,155)
( 49,158)( 50,157)( 51,160)( 52,159)( 53,162)( 54,161)( 55,164)( 56,163)
( 57,166)( 58,165)( 59,168)( 60,167)( 61,170)( 62,169)( 63,172)( 64,171)
( 65,174)( 66,173)( 67,176)( 68,175)( 69,178)( 70,177)( 71,180)( 72,179)
( 73,182)( 74,181)( 75,184)( 76,183)( 77,186)( 78,185)( 79,188)( 80,187)
( 81,190)( 82,189)( 83,192)( 84,191)( 85,194)( 86,193)( 87,196)( 88,195)
( 89,198)( 90,197)( 91,200)( 92,199)( 93,202)( 94,201)( 95,204)( 96,203)
( 97,206)( 98,205)( 99,208)(100,207)(101,210)(102,209)(103,212)(104,211)
(105,214)(106,213)(107,216)(108,215);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s4*s2*s3*s4*s2*s3*s4,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 13, 25)( 14, 26)( 15, 27)( 16, 28)( 17, 29)( 18, 30)( 19, 31)
( 20, 32)( 21, 33)( 22, 34)( 23, 35)( 24, 36)( 49, 61)( 50, 62)( 51, 63)
( 52, 64)( 53, 65)( 54, 66)( 55, 67)( 56, 68)( 57, 69)( 58, 70)( 59, 71)
( 60, 72)( 85, 97)( 86, 98)( 87, 99)( 88,100)( 89,101)( 90,102)( 91,103)
( 92,104)( 93,105)( 94,106)( 95,107)( 96,108)(121,133)(122,134)(123,135)
(124,136)(125,137)(126,138)(127,139)(128,140)(129,141)(130,142)(131,143)
(132,144)(157,169)(158,170)(159,171)(160,172)(161,173)(162,174)(163,175)
(164,176)(165,177)(166,178)(167,179)(168,180)(193,205)(194,206)(195,207)
(196,208)(197,209)(198,210)(199,211)(200,212)(201,213)(202,214)(203,215)
(204,216);
s1 := Sym(216)!( 1, 13)( 2, 14)( 3, 15)( 4, 16)( 5, 21)( 6, 22)( 7, 23)
( 8, 24)( 9, 17)( 10, 18)( 11, 19)( 12, 20)( 29, 33)( 30, 34)( 31, 35)
( 32, 36)( 37, 49)( 38, 50)( 39, 51)( 40, 52)( 41, 57)( 42, 58)( 43, 59)
( 44, 60)( 45, 53)( 46, 54)( 47, 55)( 48, 56)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 73, 85)( 74, 86)( 75, 87)( 76, 88)( 77, 93)( 78, 94)( 79, 95)
( 80, 96)( 81, 89)( 82, 90)( 83, 91)( 84, 92)(101,105)(102,106)(103,107)
(104,108)(109,121)(110,122)(111,123)(112,124)(113,129)(114,130)(115,131)
(116,132)(117,125)(118,126)(119,127)(120,128)(137,141)(138,142)(139,143)
(140,144)(145,157)(146,158)(147,159)(148,160)(149,165)(150,166)(151,167)
(152,168)(153,161)(154,162)(155,163)(156,164)(173,177)(174,178)(175,179)
(176,180)(181,193)(182,194)(183,195)(184,196)(185,201)(186,202)(187,203)
(188,204)(189,197)(190,198)(191,199)(192,200)(209,213)(210,214)(211,215)
(212,216);
s2 := Sym(216)!( 1, 5)( 2, 6)( 3, 8)( 4, 7)( 11, 12)( 13, 17)( 14, 18)
( 15, 20)( 16, 19)( 23, 24)( 25, 29)( 26, 30)( 27, 32)( 28, 31)( 35, 36)
( 37, 77)( 38, 78)( 39, 80)( 40, 79)( 41, 73)( 42, 74)( 43, 76)( 44, 75)
( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 89)( 50, 90)( 51, 92)( 52, 91)
( 53, 85)( 54, 86)( 55, 88)( 56, 87)( 57, 93)( 58, 94)( 59, 96)( 60, 95)
( 61,101)( 62,102)( 63,104)( 64,103)( 65, 97)( 66, 98)( 67,100)( 68, 99)
( 69,105)( 70,106)( 71,108)( 72,107)(109,113)(110,114)(111,116)(112,115)
(119,120)(121,125)(122,126)(123,128)(124,127)(131,132)(133,137)(134,138)
(135,140)(136,139)(143,144)(145,185)(146,186)(147,188)(148,187)(149,181)
(150,182)(151,184)(152,183)(153,189)(154,190)(155,192)(156,191)(157,197)
(158,198)(159,200)(160,199)(161,193)(162,194)(163,196)(164,195)(165,201)
(166,202)(167,204)(168,203)(169,209)(170,210)(171,212)(172,211)(173,205)
(174,206)(175,208)(176,207)(177,213)(178,214)(179,216)(180,215);
s3 := Sym(216)!( 1,145)( 2,148)( 3,147)( 4,146)( 5,153)( 6,156)( 7,155)
( 8,154)( 9,149)( 10,152)( 11,151)( 12,150)( 13,157)( 14,160)( 15,159)
( 16,158)( 17,165)( 18,168)( 19,167)( 20,166)( 21,161)( 22,164)( 23,163)
( 24,162)( 25,169)( 26,172)( 27,171)( 28,170)( 29,177)( 30,180)( 31,179)
( 32,178)( 33,173)( 34,176)( 35,175)( 36,174)( 37,109)( 38,112)( 39,111)
( 40,110)( 41,117)( 42,120)( 43,119)( 44,118)( 45,113)( 46,116)( 47,115)
( 48,114)( 49,121)( 50,124)( 51,123)( 52,122)( 53,129)( 54,132)( 55,131)
( 56,130)( 57,125)( 58,128)( 59,127)( 60,126)( 61,133)( 62,136)( 63,135)
( 64,134)( 65,141)( 66,144)( 67,143)( 68,142)( 69,137)( 70,140)( 71,139)
( 72,138)( 73,181)( 74,184)( 75,183)( 76,182)( 77,189)( 78,192)( 79,191)
( 80,190)( 81,185)( 82,188)( 83,187)( 84,186)( 85,193)( 86,196)( 87,195)
( 88,194)( 89,201)( 90,204)( 91,203)( 92,202)( 93,197)( 94,200)( 95,199)
( 96,198)( 97,205)( 98,208)( 99,207)(100,206)(101,213)(102,216)(103,215)
(104,214)(105,209)(106,212)(107,211)(108,210);
s4 := Sym(216)!( 1,110)( 2,109)( 3,112)( 4,111)( 5,114)( 6,113)( 7,116)
( 8,115)( 9,118)( 10,117)( 11,120)( 12,119)( 13,122)( 14,121)( 15,124)
( 16,123)( 17,126)( 18,125)( 19,128)( 20,127)( 21,130)( 22,129)( 23,132)
( 24,131)( 25,134)( 26,133)( 27,136)( 28,135)( 29,138)( 30,137)( 31,140)
( 32,139)( 33,142)( 34,141)( 35,144)( 36,143)( 37,146)( 38,145)( 39,148)
( 40,147)( 41,150)( 42,149)( 43,152)( 44,151)( 45,154)( 46,153)( 47,156)
( 48,155)( 49,158)( 50,157)( 51,160)( 52,159)( 53,162)( 54,161)( 55,164)
( 56,163)( 57,166)( 58,165)( 59,168)( 60,167)( 61,170)( 62,169)( 63,172)
( 64,171)( 65,174)( 66,173)( 67,176)( 68,175)( 69,178)( 70,177)( 71,180)
( 72,179)( 73,182)( 74,181)( 75,184)( 76,183)( 77,186)( 78,185)( 79,188)
( 80,187)( 81,190)( 82,189)( 83,192)( 84,191)( 85,194)( 86,193)( 87,196)
( 88,195)( 89,198)( 90,197)( 91,200)( 92,199)( 93,202)( 94,201)( 95,204)
( 96,203)( 97,206)( 98,205)( 99,208)(100,207)(101,210)(102,209)(103,212)
(104,211)(105,214)(106,213)(107,216)(108,215);
poly := sub<Sym(216)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s4*s2*s3*s4*s2*s3*s4,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope