include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,6,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,6,6}*1728c
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 5
Schlafli Type : {3,6,6,6}
Number of vertices, edges, etc : 4, 12, 24, 18, 6
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,6,6,3}*864b
3-fold quotients : {3,6,2,6}*576
6-fold quotients : {3,3,2,6}*288, {3,6,2,3}*288
9-fold quotients : {3,6,2,2}*192
12-fold quotients : {3,3,2,3}*144
18-fold quotients : {3,3,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)( 43, 80)
( 44, 79)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)( 51, 88)
( 52, 87)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)( 59, 96)
( 60, 95)( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)( 67,104)
( 68,103)( 69,105)( 70,106)( 71,108)( 72,107)(111,112)(115,116)(119,120)
(123,124)(127,128)(131,132)(135,136)(139,140)(143,144)(145,181)(146,182)
(147,184)(148,183)(149,185)(150,186)(151,188)(152,187)(153,189)(154,190)
(155,192)(156,191)(157,193)(158,194)(159,196)(160,195)(161,197)(162,198)
(163,200)(164,199)(165,201)(166,202)(167,204)(168,203)(169,205)(170,206)
(171,208)(172,207)(173,209)(174,210)(175,212)(176,211)(177,213)(178,214)
(179,216)(180,215);;
s1 := ( 1, 37)( 2, 40)( 3, 39)( 4, 38)( 5, 41)( 6, 44)( 7, 43)( 8, 42)
( 9, 45)( 10, 48)( 11, 47)( 12, 46)( 13, 49)( 14, 52)( 15, 51)( 16, 50)
( 17, 53)( 18, 56)( 19, 55)( 20, 54)( 21, 57)( 22, 60)( 23, 59)( 24, 58)
( 25, 61)( 26, 64)( 27, 63)( 28, 62)( 29, 65)( 30, 68)( 31, 67)( 32, 66)
( 33, 69)( 34, 72)( 35, 71)( 36, 70)( 74, 76)( 78, 80)( 82, 84)( 86, 88)
( 90, 92)( 94, 96)( 98,100)(102,104)(106,108)(109,145)(110,148)(111,147)
(112,146)(113,149)(114,152)(115,151)(116,150)(117,153)(118,156)(119,155)
(120,154)(121,157)(122,160)(123,159)(124,158)(125,161)(126,164)(127,163)
(128,162)(129,165)(130,168)(131,167)(132,166)(133,169)(134,172)(135,171)
(136,170)(137,173)(138,176)(139,175)(140,174)(141,177)(142,180)(143,179)
(144,178)(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)(206,208)
(210,212)(214,216);;
s2 := ( 1, 2)( 5, 6)( 9, 10)( 13, 26)( 14, 25)( 15, 27)( 16, 28)( 17, 30)
( 18, 29)( 19, 31)( 20, 32)( 21, 34)( 22, 33)( 23, 35)( 24, 36)( 37, 74)
( 38, 73)( 39, 75)( 40, 76)( 41, 78)( 42, 77)( 43, 79)( 44, 80)( 45, 82)
( 46, 81)( 47, 83)( 48, 84)( 49, 98)( 50, 97)( 51, 99)( 52,100)( 53,102)
( 54,101)( 55,103)( 56,104)( 57,106)( 58,105)( 59,107)( 60,108)( 61, 86)
( 62, 85)( 63, 87)( 64, 88)( 65, 90)( 66, 89)( 67, 91)( 68, 92)( 69, 94)
( 70, 93)( 71, 95)( 72, 96)(109,110)(113,114)(117,118)(121,134)(122,133)
(123,135)(124,136)(125,138)(126,137)(127,139)(128,140)(129,142)(130,141)
(131,143)(132,144)(145,182)(146,181)(147,183)(148,184)(149,186)(150,185)
(151,187)(152,188)(153,190)(154,189)(155,191)(156,192)(157,206)(158,205)
(159,207)(160,208)(161,210)(162,209)(163,211)(164,212)(165,214)(166,213)
(167,215)(168,216)(169,194)(170,193)(171,195)(172,196)(173,198)(174,197)
(175,199)(176,200)(177,202)(178,201)(179,203)(180,204);;
s3 := ( 1, 13)( 2, 14)( 3, 15)( 4, 16)( 5, 21)( 6, 22)( 7, 23)( 8, 24)
( 9, 17)( 10, 18)( 11, 19)( 12, 20)( 29, 33)( 30, 34)( 31, 35)( 32, 36)
( 37, 49)( 38, 50)( 39, 51)( 40, 52)( 41, 57)( 42, 58)( 43, 59)( 44, 60)
( 45, 53)( 46, 54)( 47, 55)( 48, 56)( 65, 69)( 66, 70)( 67, 71)( 68, 72)
( 73, 85)( 74, 86)( 75, 87)( 76, 88)( 77, 93)( 78, 94)( 79, 95)( 80, 96)
( 81, 89)( 82, 90)( 83, 91)( 84, 92)(101,105)(102,106)(103,107)(104,108)
(109,121)(110,122)(111,123)(112,124)(113,129)(114,130)(115,131)(116,132)
(117,125)(118,126)(119,127)(120,128)(137,141)(138,142)(139,143)(140,144)
(145,157)(146,158)(147,159)(148,160)(149,165)(150,166)(151,167)(152,168)
(153,161)(154,162)(155,163)(156,164)(173,177)(174,178)(175,179)(176,180)
(181,193)(182,194)(183,195)(184,196)(185,201)(186,202)(187,203)(188,204)
(189,197)(190,198)(191,199)(192,200)(209,213)(210,214)(211,215)(212,216);;
s4 := ( 1,113)( 2,114)( 3,115)( 4,116)( 5,109)( 6,110)( 7,111)( 8,112)
( 9,117)( 10,118)( 11,119)( 12,120)( 13,137)( 14,138)( 15,139)( 16,140)
( 17,133)( 18,134)( 19,135)( 20,136)( 21,141)( 22,142)( 23,143)( 24,144)
( 25,125)( 26,126)( 27,127)( 28,128)( 29,121)( 30,122)( 31,123)( 32,124)
( 33,129)( 34,130)( 35,131)( 36,132)( 37,149)( 38,150)( 39,151)( 40,152)
( 41,145)( 42,146)( 43,147)( 44,148)( 45,153)( 46,154)( 47,155)( 48,156)
( 49,173)( 50,174)( 51,175)( 52,176)( 53,169)( 54,170)( 55,171)( 56,172)
( 57,177)( 58,178)( 59,179)( 60,180)( 61,161)( 62,162)( 63,163)( 64,164)
( 65,157)( 66,158)( 67,159)( 68,160)( 69,165)( 70,166)( 71,167)( 72,168)
( 73,185)( 74,186)( 75,187)( 76,188)( 77,181)( 78,182)( 79,183)( 80,184)
( 81,189)( 82,190)( 83,191)( 84,192)( 85,209)( 86,210)( 87,211)( 88,212)
( 89,205)( 90,206)( 91,207)( 92,208)( 93,213)( 94,214)( 95,215)( 96,216)
( 97,197)( 98,198)( 99,199)(100,200)(101,193)(102,194)(103,195)(104,196)
(105,201)(106,202)(107,203)(108,204);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3,
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(216)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 37, 73)( 38, 74)( 39, 76)( 40, 75)( 41, 77)( 42, 78)
( 43, 80)( 44, 79)( 45, 81)( 46, 82)( 47, 84)( 48, 83)( 49, 85)( 50, 86)
( 51, 88)( 52, 87)( 53, 89)( 54, 90)( 55, 92)( 56, 91)( 57, 93)( 58, 94)
( 59, 96)( 60, 95)( 61, 97)( 62, 98)( 63,100)( 64, 99)( 65,101)( 66,102)
( 67,104)( 68,103)( 69,105)( 70,106)( 71,108)( 72,107)(111,112)(115,116)
(119,120)(123,124)(127,128)(131,132)(135,136)(139,140)(143,144)(145,181)
(146,182)(147,184)(148,183)(149,185)(150,186)(151,188)(152,187)(153,189)
(154,190)(155,192)(156,191)(157,193)(158,194)(159,196)(160,195)(161,197)
(162,198)(163,200)(164,199)(165,201)(166,202)(167,204)(168,203)(169,205)
(170,206)(171,208)(172,207)(173,209)(174,210)(175,212)(176,211)(177,213)
(178,214)(179,216)(180,215);
s1 := Sym(216)!( 1, 37)( 2, 40)( 3, 39)( 4, 38)( 5, 41)( 6, 44)( 7, 43)
( 8, 42)( 9, 45)( 10, 48)( 11, 47)( 12, 46)( 13, 49)( 14, 52)( 15, 51)
( 16, 50)( 17, 53)( 18, 56)( 19, 55)( 20, 54)( 21, 57)( 22, 60)( 23, 59)
( 24, 58)( 25, 61)( 26, 64)( 27, 63)( 28, 62)( 29, 65)( 30, 68)( 31, 67)
( 32, 66)( 33, 69)( 34, 72)( 35, 71)( 36, 70)( 74, 76)( 78, 80)( 82, 84)
( 86, 88)( 90, 92)( 94, 96)( 98,100)(102,104)(106,108)(109,145)(110,148)
(111,147)(112,146)(113,149)(114,152)(115,151)(116,150)(117,153)(118,156)
(119,155)(120,154)(121,157)(122,160)(123,159)(124,158)(125,161)(126,164)
(127,163)(128,162)(129,165)(130,168)(131,167)(132,166)(133,169)(134,172)
(135,171)(136,170)(137,173)(138,176)(139,175)(140,174)(141,177)(142,180)
(143,179)(144,178)(182,184)(186,188)(190,192)(194,196)(198,200)(202,204)
(206,208)(210,212)(214,216);
s2 := Sym(216)!( 1, 2)( 5, 6)( 9, 10)( 13, 26)( 14, 25)( 15, 27)( 16, 28)
( 17, 30)( 18, 29)( 19, 31)( 20, 32)( 21, 34)( 22, 33)( 23, 35)( 24, 36)
( 37, 74)( 38, 73)( 39, 75)( 40, 76)( 41, 78)( 42, 77)( 43, 79)( 44, 80)
( 45, 82)( 46, 81)( 47, 83)( 48, 84)( 49, 98)( 50, 97)( 51, 99)( 52,100)
( 53,102)( 54,101)( 55,103)( 56,104)( 57,106)( 58,105)( 59,107)( 60,108)
( 61, 86)( 62, 85)( 63, 87)( 64, 88)( 65, 90)( 66, 89)( 67, 91)( 68, 92)
( 69, 94)( 70, 93)( 71, 95)( 72, 96)(109,110)(113,114)(117,118)(121,134)
(122,133)(123,135)(124,136)(125,138)(126,137)(127,139)(128,140)(129,142)
(130,141)(131,143)(132,144)(145,182)(146,181)(147,183)(148,184)(149,186)
(150,185)(151,187)(152,188)(153,190)(154,189)(155,191)(156,192)(157,206)
(158,205)(159,207)(160,208)(161,210)(162,209)(163,211)(164,212)(165,214)
(166,213)(167,215)(168,216)(169,194)(170,193)(171,195)(172,196)(173,198)
(174,197)(175,199)(176,200)(177,202)(178,201)(179,203)(180,204);
s3 := Sym(216)!( 1, 13)( 2, 14)( 3, 15)( 4, 16)( 5, 21)( 6, 22)( 7, 23)
( 8, 24)( 9, 17)( 10, 18)( 11, 19)( 12, 20)( 29, 33)( 30, 34)( 31, 35)
( 32, 36)( 37, 49)( 38, 50)( 39, 51)( 40, 52)( 41, 57)( 42, 58)( 43, 59)
( 44, 60)( 45, 53)( 46, 54)( 47, 55)( 48, 56)( 65, 69)( 66, 70)( 67, 71)
( 68, 72)( 73, 85)( 74, 86)( 75, 87)( 76, 88)( 77, 93)( 78, 94)( 79, 95)
( 80, 96)( 81, 89)( 82, 90)( 83, 91)( 84, 92)(101,105)(102,106)(103,107)
(104,108)(109,121)(110,122)(111,123)(112,124)(113,129)(114,130)(115,131)
(116,132)(117,125)(118,126)(119,127)(120,128)(137,141)(138,142)(139,143)
(140,144)(145,157)(146,158)(147,159)(148,160)(149,165)(150,166)(151,167)
(152,168)(153,161)(154,162)(155,163)(156,164)(173,177)(174,178)(175,179)
(176,180)(181,193)(182,194)(183,195)(184,196)(185,201)(186,202)(187,203)
(188,204)(189,197)(190,198)(191,199)(192,200)(209,213)(210,214)(211,215)
(212,216);
s4 := Sym(216)!( 1,113)( 2,114)( 3,115)( 4,116)( 5,109)( 6,110)( 7,111)
( 8,112)( 9,117)( 10,118)( 11,119)( 12,120)( 13,137)( 14,138)( 15,139)
( 16,140)( 17,133)( 18,134)( 19,135)( 20,136)( 21,141)( 22,142)( 23,143)
( 24,144)( 25,125)( 26,126)( 27,127)( 28,128)( 29,121)( 30,122)( 31,123)
( 32,124)( 33,129)( 34,130)( 35,131)( 36,132)( 37,149)( 38,150)( 39,151)
( 40,152)( 41,145)( 42,146)( 43,147)( 44,148)( 45,153)( 46,154)( 47,155)
( 48,156)( 49,173)( 50,174)( 51,175)( 52,176)( 53,169)( 54,170)( 55,171)
( 56,172)( 57,177)( 58,178)( 59,179)( 60,180)( 61,161)( 62,162)( 63,163)
( 64,164)( 65,157)( 66,158)( 67,159)( 68,160)( 69,165)( 70,166)( 71,167)
( 72,168)( 73,185)( 74,186)( 75,187)( 76,188)( 77,181)( 78,182)( 79,183)
( 80,184)( 81,189)( 82,190)( 83,191)( 84,192)( 85,209)( 86,210)( 87,211)
( 88,212)( 89,205)( 90,206)( 91,207)( 92,208)( 93,213)( 94,214)( 95,215)
( 96,216)( 97,197)( 98,198)( 99,199)(100,200)(101,193)(102,194)(103,195)
(104,196)(105,201)(106,202)(107,203)(108,204);
poly := sub<Sym(216)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
References : None.
to this polytope