include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,4,6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,4,6,3,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 6
Schlafli Type : {3,4,6,3,2}
Number of vertices, edges, etc : 6, 12, 24, 9, 3, 2
Order of s0s1s2s3s4s5 : 6
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {3,4,2,3,2}*576
4-fold quotients : {3,2,6,3,2}*432
6-fold quotients : {3,4,2,3,2}*288
12-fold quotients : {3,2,2,3,2}*144
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35);;
s1 := ( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)(31,32)(35,36);;
s2 := ( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)(13,16)(14,15)(17,24)(18,23)
(19,22)(20,21)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33);;
s3 := ( 1, 5)( 2, 6)( 3, 7)( 4, 8)(13,29)(14,30)(15,31)(16,32)(17,25)(18,26)
(19,27)(20,28)(21,33)(22,34)(23,35)(24,36);;
s4 := ( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)
(11,19)(12,20)(29,33)(30,34)(31,35)(32,36);;
s5 := (37,38);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35);
s1 := Sym(38)!( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)(31,32)(35,36);
s2 := Sym(38)!( 1, 4)( 2, 3)( 5,12)( 6,11)( 7,10)( 8, 9)(13,16)(14,15)(17,24)
(18,23)(19,22)(20,21)(25,28)(26,27)(29,36)(30,35)(31,34)(32,33);
s3 := Sym(38)!( 1, 5)( 2, 6)( 3, 7)( 4, 8)(13,29)(14,30)(15,31)(16,32)(17,25)
(18,26)(19,27)(20,28)(21,33)(22,34)(23,35)(24,36);
s4 := Sym(38)!( 1,13)( 2,14)( 3,15)( 4,16)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)
(10,18)(11,19)(12,20)(29,33)(30,34)(31,35)(32,36);
s5 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s4*s2*s3*s2*s3*s4*s2*s3*s2*s3 >;
to this polytope