Polytope of Type {3,6,6,3,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,6,6,3,2}*1728a
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 6
Schlafli Type : {3,6,6,3,2}
Number of vertices, edges, etc : 3, 9, 24, 12, 4, 2
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {3,2,6,3,2}*576
   6-fold quotients : {3,2,3,3,2}*288
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)(18,34)
(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);;
s1 := ( 1,17)( 2,18)( 3,19)( 4,20)( 5,13)( 6,14)( 7,15)( 8,16)( 9,21)(10,22)
(11,23)(12,24)(25,29)(26,30)(27,31)(28,32);;
s2 := ( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)(20,24)
(26,27)(29,33)(30,35)(31,34)(32,36);;
s3 := ( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)(31,32)(35,36);;
s4 := ( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36);;
s5 := (37,38);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(38)!( 5, 9)( 6,10)( 7,11)( 8,12)(13,25)(14,26)(15,27)(16,28)(17,33)
(18,34)(19,35)(20,36)(21,29)(22,30)(23,31)(24,32);
s1 := Sym(38)!( 1,17)( 2,18)( 3,19)( 4,20)( 5,13)( 6,14)( 7,15)( 8,16)( 9,21)
(10,22)(11,23)(12,24)(25,29)(26,30)(27,31)(28,32);
s2 := Sym(38)!( 2, 3)( 5, 9)( 6,11)( 7,10)( 8,12)(14,15)(17,21)(18,23)(19,22)
(20,24)(26,27)(29,33)(30,35)(31,34)(32,36);
s3 := Sym(38)!( 3, 4)( 7, 8)(11,12)(15,16)(19,20)(23,24)(27,28)(31,32)(35,36);
s4 := Sym(38)!( 1, 4)( 5, 8)( 9,12)(13,16)(17,20)(21,24)(25,28)(29,32)(33,36);
s5 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5, 
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5, 
s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s2*s4*s3*s2*s4*s3*s2*s4*s3*s2*s4*s3, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope