include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,6,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,6,3,2}*1728
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 5
Schlafli Type : {6,6,3,2}
Number of vertices, edges, etc : 6, 72, 36, 12, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,3,2}*576, {6,6,3,2}*576
4-fold quotients : {6,6,3,2}*432b
9-fold quotients : {2,6,3,2}*192
12-fold quotients : {2,6,3,2}*144, {6,2,3,2}*144
18-fold quotients : {2,3,3,2}*96
24-fold quotients : {3,2,3,2}*72
36-fold quotients : {2,2,3,2}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)(30,34)
(31,35)(32,36);;
s1 := ( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,17)(14,19)(15,18)(16,20)(22,23)
(25,29)(26,31)(27,30)(28,32)(34,35);;
s2 := ( 3, 4)( 7, 8)(11,12)(13,25)(14,26)(15,28)(16,27)(17,29)(18,30)(19,32)
(20,31)(21,33)(22,34)(23,36)(24,35);;
s3 := ( 1,16)( 2,14)( 3,15)( 4,13)( 5,20)( 6,18)( 7,19)( 8,17)( 9,24)(10,22)
(11,23)(12,21)(25,28)(29,32)(33,36);;
s4 := (37,38);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)
(30,34)(31,35)(32,36);
s1 := Sym(38)!( 1, 5)( 2, 7)( 3, 6)( 4, 8)(10,11)(13,17)(14,19)(15,18)(16,20)
(22,23)(25,29)(26,31)(27,30)(28,32)(34,35);
s2 := Sym(38)!( 3, 4)( 7, 8)(11,12)(13,25)(14,26)(15,28)(16,27)(17,29)(18,30)
(19,32)(20,31)(21,33)(22,34)(23,36)(24,35);
s3 := Sym(38)!( 1,16)( 2,14)( 3,15)( 4,13)( 5,20)( 6,18)( 7,19)( 8,17)( 9,24)
(10,22)(11,23)(12,21)(25,28)(29,32)(33,36);
s4 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >;
to this polytope