include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,6,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,6,2}*1728i
if this polytope has a name.
Group : SmallGroup(1728,47874)
Rank : 5
Schlafli Type : {6,12,6,2}
Number of vertices, edges, etc : 6, 36, 36, 6, 2
Order of s0s1s2s3s4 : 6
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,12,2,2}*576d
9-fold quotients : {6,4,2,2}*192b
18-fold quotients : {3,4,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35);;
s1 := ( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,25)(14,26)(15,28)(16,27)(17,33)
(18,34)(19,36)(20,35)(21,29)(22,30)(23,32)(24,31);;
s2 := ( 1,20)( 2,19)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,24)(10,23)
(11,22)(12,21)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35);;
s3 := ( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)(30,34)
(31,35)(32,36);;
s4 := (37,38);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s2*s0*s1*s2*s0*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!( 2, 3)( 6, 7)(10,11)(14,15)(18,19)(22,23)(26,27)(30,31)(34,35);
s1 := Sym(38)!( 3, 4)( 5, 9)( 6,10)( 7,12)( 8,11)(13,25)(14,26)(15,28)(16,27)
(17,33)(18,34)(19,36)(20,35)(21,29)(22,30)(23,32)(24,31);
s2 := Sym(38)!( 1,20)( 2,19)( 3,18)( 4,17)( 5,16)( 6,15)( 7,14)( 8,13)( 9,24)
(10,23)(11,22)(12,21)(25,32)(26,31)(27,30)(28,29)(33,36)(34,35);
s3 := Sym(38)!( 5, 9)( 6,10)( 7,11)( 8,12)(17,21)(18,22)(19,23)(20,24)(29,33)
(30,34)(31,35)(32,36);
s4 := Sym(38)!(37,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s1*s2*s0*s1*s2*s0*s1*s2,
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1*s0*s1*s2*s1 >;
to this polytope