Polytope of Type {6,4,6,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,6,2}*1728b
if this polytope has a name.
Group : SmallGroup(1728,47887)
Rank : 5
Schlafli Type : {6,4,6,2}
Number of vertices, edges, etc : 18, 36, 36, 6, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {6,4,6,2}*864a
   3-fold quotients : {6,4,2,2}*576
   6-fold quotients : {6,4,2,2}*288
   9-fold quotients : {2,4,6,2}*192a
   18-fold quotients : {2,2,6,2}*96
   27-fold quotients : {2,4,2,2}*64
   36-fold quotients : {2,2,3,2}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,46)
(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)(21,39)
(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);;
s1 := ( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)(28,37)
(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45);;
s2 := ( 2, 3)( 4,10)( 5,12)( 6,11)( 7,19)( 8,21)( 9,20)(14,15)(16,22)(17,24)
(18,23)(26,27)(29,30)(31,37)(32,39)(33,38)(34,46)(35,48)(36,47)(41,42)(43,49)
(44,51)(45,50)(53,54);;
s3 := ( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)(28,29)
(31,32)(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53);;
s4 := (55,56);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(56)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,46)(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)
(21,39)(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);
s1 := Sym(56)!( 1,10)( 2,11)( 3,12)( 4,13)( 5,14)( 6,15)( 7,16)( 8,17)( 9,18)
(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45);
s2 := Sym(56)!( 2, 3)( 4,10)( 5,12)( 6,11)( 7,19)( 8,21)( 9,20)(14,15)(16,22)
(17,24)(18,23)(26,27)(29,30)(31,37)(32,39)(33,38)(34,46)(35,48)(36,47)(41,42)
(43,49)(44,51)(45,50)(53,54);
s3 := Sym(56)!( 1, 2)( 4, 5)( 7, 8)(10,11)(13,14)(16,17)(19,20)(22,23)(25,26)
(28,29)(31,32)(34,35)(37,38)(40,41)(43,44)(46,47)(49,50)(52,53);
s4 := Sym(56)!(55,56);
poly := sub<Sym(56)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope