Polytope of Type {3,2,2,6,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,6,4}*1728
if this polytope has a name.
Group : SmallGroup(1728,47887)
Rank : 6
Schlafli Type : {3,2,2,6,4}
Number of vertices, edges, etc : 3, 3, 2, 18, 36, 12
Order of s0s1s2s3s4s5 : 12
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {3,2,2,6,4}*864
   9-fold quotients : {3,2,2,2,4}*192
   18-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 6,33)( 7,35)( 8,34)( 9,39)(10,41)(11,40)(12,36)(13,38)(14,37)(15,24)
(16,26)(17,25)(18,30)(19,32)(20,31)(21,27)(22,29)(23,28)(42,69)(43,71)(44,70)
(45,75)(46,77)(47,76)(48,72)(49,74)(50,73)(51,60)(52,62)(53,61)(54,66)(55,68)
(56,67)(57,63)(58,65)(59,64);;
s4 := ( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)(33,36)
(34,37)(35,38)(42,54)(43,55)(44,56)(45,51)(46,52)(47,53)(48,57)(49,58)(50,59)
(60,72)(61,73)(62,74)(63,69)(64,70)(65,71)(66,75)(67,76)(68,77);;
s5 := ( 6,42)( 7,45)( 8,48)( 9,43)(10,46)(11,49)(12,44)(13,47)(14,50)(15,51)
(16,54)(17,57)(18,52)(19,55)(20,58)(21,53)(22,56)(23,59)(24,60)(25,63)(26,66)
(27,61)(28,64)(29,67)(30,62)(31,65)(32,68)(33,69)(34,72)(35,75)(36,70)(37,73)
(38,76)(39,71)(40,74)(41,77);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  s5 := F.6;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5, 
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5, 
s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5, 
s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(77)!(2,3);
s1 := Sym(77)!(1,2);
s2 := Sym(77)!(4,5);
s3 := Sym(77)!( 6,33)( 7,35)( 8,34)( 9,39)(10,41)(11,40)(12,36)(13,38)(14,37)
(15,24)(16,26)(17,25)(18,30)(19,32)(20,31)(21,27)(22,29)(23,28)(42,69)(43,71)
(44,70)(45,75)(46,77)(47,76)(48,72)(49,74)(50,73)(51,60)(52,62)(53,61)(54,66)
(55,68)(56,67)(57,63)(58,65)(59,64);
s4 := Sym(77)!( 6, 9)( 7,10)( 8,11)(15,18)(16,19)(17,20)(24,27)(25,28)(26,29)
(33,36)(34,37)(35,38)(42,54)(43,55)(44,56)(45,51)(46,52)(47,53)(48,57)(49,58)
(50,59)(60,72)(61,73)(62,74)(63,69)(64,70)(65,71)(66,75)(67,76)(68,77);
s5 := Sym(77)!( 6,42)( 7,45)( 8,48)( 9,43)(10,46)(11,49)(12,44)(13,47)(14,50)
(15,51)(16,54)(17,57)(18,52)(19,55)(20,58)(21,53)(22,56)(23,59)(24,60)(25,63)
(26,66)(27,61)(28,64)(29,67)(30,62)(31,65)(32,68)(33,69)(34,72)(35,75)(36,70)
(37,73)(38,76)(39,71)(40,74)(41,77);
poly := sub<Sym(77)|s0,s1,s2,s3,s4,s5>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5, 
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5, 
s5*s3*s4*s5*s3*s4*s5*s3*s4*s5*s3*s4, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope