include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,12,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,12,2,2}*1728i
if this polytope has a name.
Group : SmallGroup(1728,47912)
Rank : 5
Schlafli Type : {6,12,2,2}
Number of vertices, edges, etc : 18, 108, 36, 2, 2
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {6,12,2,2}*864c
3-fold quotients : {6,4,2,2}*576
6-fold quotients : {6,4,2,2}*288
9-fold quotients : {2,12,2,2}*192
18-fold quotients : {2,6,2,2}*96
27-fold quotients : {2,4,2,2}*64
36-fold quotients : {2,3,2,2}*48
54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)(10,46)
(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)(21,39)
(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);;
s1 := ( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)(20,24)
(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)(46,49)
(47,51)(48,50)(53,54);;
s2 := ( 1, 2)( 4,11)( 5,10)( 6,12)( 7,20)( 8,19)( 9,21)(13,14)(16,23)(17,22)
(18,24)(25,26)(28,29)(31,38)(32,37)(33,39)(34,47)(35,46)(36,48)(40,41)(43,50)
(44,49)(45,51)(52,53);;
s3 := (55,56);;
s4 := (57,58);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(58)!( 1,28)( 2,29)( 3,30)( 4,34)( 5,35)( 6,36)( 7,31)( 8,32)( 9,33)
(10,46)(11,47)(12,48)(13,52)(14,53)(15,54)(16,49)(17,50)(18,51)(19,37)(20,38)
(21,39)(22,43)(23,44)(24,45)(25,40)(26,41)(27,42);
s1 := Sym(58)!( 1, 4)( 2, 6)( 3, 5)( 8, 9)(10,13)(11,15)(12,14)(17,18)(19,22)
(20,24)(21,23)(26,27)(28,31)(29,33)(30,32)(35,36)(37,40)(38,42)(39,41)(44,45)
(46,49)(47,51)(48,50)(53,54);
s2 := Sym(58)!( 1, 2)( 4,11)( 5,10)( 6,12)( 7,20)( 8,19)( 9,21)(13,14)(16,23)
(17,22)(18,24)(25,26)(28,29)(31,38)(32,37)(33,39)(34,47)(35,46)(36,48)(40,41)
(43,50)(44,49)(45,51)(52,53);
s3 := Sym(58)!(55,56);
s4 := Sym(58)!(57,58);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s0*s1*s2*s0*s1*s0*s1*s2*s1*s2*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope