Polytope of Type {2,2,6,12}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,6,12}*1728i
if this polytope has a name.
Group : SmallGroup(1728,47912)
Rank : 5
Schlafli Type : {2,2,6,12}
Number of vertices, edges, etc : 2, 2, 18, 108, 36
Order of s0s1s2s3s4 : 12
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,6,12}*864c
   3-fold quotients : {2,2,6,4}*576
   6-fold quotients : {2,2,6,4}*288
   9-fold quotients : {2,2,2,12}*192
   18-fold quotients : {2,2,2,6}*96
   27-fold quotients : {2,2,2,4}*64
   36-fold quotients : {2,2,2,3}*48
   54-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := ( 5,32)( 6,33)( 7,34)( 8,38)( 9,39)(10,40)(11,35)(12,36)(13,37)(14,50)
(15,51)(16,52)(17,56)(18,57)(19,58)(20,53)(21,54)(22,55)(23,41)(24,42)(25,43)
(26,47)(27,48)(28,49)(29,44)(30,45)(31,46);;
s3 := ( 5, 8)( 6,10)( 7, 9)(12,13)(14,17)(15,19)(16,18)(21,22)(23,26)(24,28)
(25,27)(30,31)(32,35)(33,37)(34,36)(39,40)(41,44)(42,46)(43,45)(48,49)(50,53)
(51,55)(52,54)(57,58);;
s4 := ( 5, 6)( 8,15)( 9,14)(10,16)(11,24)(12,23)(13,25)(17,18)(20,27)(21,26)
(22,28)(29,30)(32,33)(35,42)(36,41)(37,43)(38,51)(39,50)(40,52)(44,45)(47,54)
(48,53)(49,55)(56,57);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s2*s3*s2*s3*s4*s3*s4*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(58)!(1,2);
s1 := Sym(58)!(3,4);
s2 := Sym(58)!( 5,32)( 6,33)( 7,34)( 8,38)( 9,39)(10,40)(11,35)(12,36)(13,37)
(14,50)(15,51)(16,52)(17,56)(18,57)(19,58)(20,53)(21,54)(22,55)(23,41)(24,42)
(25,43)(26,47)(27,48)(28,49)(29,44)(30,45)(31,46);
s3 := Sym(58)!( 5, 8)( 6,10)( 7, 9)(12,13)(14,17)(15,19)(16,18)(21,22)(23,26)
(24,28)(25,27)(30,31)(32,35)(33,37)(34,36)(39,40)(41,44)(42,46)(43,45)(48,49)
(50,53)(51,55)(52,54)(57,58);
s4 := Sym(58)!( 5, 6)( 8,15)( 9,14)(10,16)(11,24)(12,23)(13,25)(17,18)(20,27)
(21,26)(22,28)(29,30)(32,33)(35,42)(36,41)(37,43)(38,51)(39,50)(40,52)(44,45)
(47,54)(48,53)(49,55)(56,57);
poly := sub<Sym(58)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3, 
s4*s2*s3*s4*s2*s3*s2*s3*s4*s3*s4*s3*s2*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope