include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,3,2,6,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,3,2,6,6}*1728b
if this polytope has a name.
Group : SmallGroup(1728,47915)
Rank : 7
Schlafli Type : {2,2,3,2,6,6}
Number of vertices, edges, etc : 2, 2, 3, 3, 6, 18, 6
Order of s0s1s2s3s4s5s6 : 6
Order of s0s1s2s3s4s5s6s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,3,2,6,3}*864
3-fold quotients : {2,2,3,2,2,6}*576
6-fold quotients : {2,2,3,2,2,3}*288
9-fold quotients : {2,2,3,2,2,2}*192
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (6,7);;
s3 := (5,6);;
s4 := (12,13)(16,17)(18,19)(20,21)(22,23)(24,25);;
s5 := ( 8,12)( 9,16)(10,20)(11,18)(14,24)(15,22)(19,21)(23,25);;
s6 := ( 8,14)( 9,10)(11,15)(12,23)(13,22)(16,19)(17,18)(20,25)(21,24);;
poly := Group([s0,s1,s2,s3,s4,s5,s6]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5","s6");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;; s6 := F.7;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s6*s6, s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s6*s0*s6, s1*s6*s1*s6,
s2*s6*s2*s6, s3*s6*s3*s6, s4*s6*s4*s6,
s2*s3*s2*s3*s2*s3, s6*s4*s5*s4*s5*s6*s4*s5*s4*s5,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(25)!(1,2);
s1 := Sym(25)!(3,4);
s2 := Sym(25)!(6,7);
s3 := Sym(25)!(5,6);
s4 := Sym(25)!(12,13)(16,17)(18,19)(20,21)(22,23)(24,25);
s5 := Sym(25)!( 8,12)( 9,16)(10,20)(11,18)(14,24)(15,22)(19,21)(23,25);
s6 := Sym(25)!( 8,14)( 9,10)(11,15)(12,23)(13,22)(16,19)(17,18)(20,25)(21,24);
poly := sub<Sym(25)|s0,s1,s2,s3,s4,s5,s6>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5,s6> := Group< s0,s1,s2,s3,s4,s5,s6 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s6*s6, s0*s1*s0*s1,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s6*s0*s6, s1*s6*s1*s6, s2*s6*s2*s6,
s3*s6*s3*s6, s4*s6*s4*s6, s2*s3*s2*s3*s2*s3,
s6*s4*s5*s4*s5*s6*s4*s5*s4*s5, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s5*s6*s5*s6*s5*s6*s5*s6*s5*s6*s5*s6 >;
to this polytope