include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,4,22}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,4,22}*1760
Also Known As : {{10,4|2},{4,22|2}}. if this polytope has another name.
Group : SmallGroup(1760,1190)
Rank : 4
Schlafli Type : {10,4,22}
Number of vertices, edges, etc : 10, 20, 44, 22
Order of s0s1s2s3 : 220
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {10,2,22}*880
4-fold quotients : {5,2,22}*440, {10,2,11}*440
5-fold quotients : {2,4,22}*352
8-fold quotients : {5,2,11}*220
10-fold quotients : {2,2,22}*176
11-fold quotients : {10,4,2}*160
20-fold quotients : {2,2,11}*88
22-fold quotients : {10,2,2}*80
44-fold quotients : {5,2,2}*40
55-fold quotients : {2,4,2}*32
110-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 12, 45)( 13, 46)( 14, 47)( 15, 48)( 16, 49)( 17, 50)( 18, 51)( 19, 52)
( 20, 53)( 21, 54)( 22, 55)( 23, 34)( 24, 35)( 25, 36)( 26, 37)( 27, 38)
( 28, 39)( 29, 40)( 30, 41)( 31, 42)( 32, 43)( 33, 44)( 67,100)( 68,101)
( 69,102)( 70,103)( 71,104)( 72,105)( 73,106)( 74,107)( 75,108)( 76,109)
( 77,110)( 78, 89)( 79, 90)( 80, 91)( 81, 92)( 82, 93)( 83, 94)( 84, 95)
( 85, 96)( 86, 97)( 87, 98)( 88, 99)(122,155)(123,156)(124,157)(125,158)
(126,159)(127,160)(128,161)(129,162)(130,163)(131,164)(132,165)(133,144)
(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,151)(141,152)
(142,153)(143,154)(177,210)(178,211)(179,212)(180,213)(181,214)(182,215)
(183,216)(184,217)(185,218)(186,219)(187,220)(188,199)(189,200)(190,201)
(191,202)(192,203)(193,204)(194,205)(195,206)(196,207)(197,208)(198,209);;
s1 := ( 1, 12)( 2, 13)( 3, 14)( 4, 15)( 5, 16)( 6, 17)( 7, 18)( 8, 19)
( 9, 20)( 10, 21)( 11, 22)( 23, 45)( 24, 46)( 25, 47)( 26, 48)( 27, 49)
( 28, 50)( 29, 51)( 30, 52)( 31, 53)( 32, 54)( 33, 55)( 56, 67)( 57, 68)
( 58, 69)( 59, 70)( 60, 71)( 61, 72)( 62, 73)( 63, 74)( 64, 75)( 65, 76)
( 66, 77)( 78,100)( 79,101)( 80,102)( 81,103)( 82,104)( 83,105)( 84,106)
( 85,107)( 86,108)( 87,109)( 88,110)(111,177)(112,178)(113,179)(114,180)
(115,181)(116,182)(117,183)(118,184)(119,185)(120,186)(121,187)(122,166)
(123,167)(124,168)(125,169)(126,170)(127,171)(128,172)(129,173)(130,174)
(131,175)(132,176)(133,210)(134,211)(135,212)(136,213)(137,214)(138,215)
(139,216)(140,217)(141,218)(142,219)(143,220)(144,199)(145,200)(146,201)
(147,202)(148,203)(149,204)(150,205)(151,206)(152,207)(153,208)(154,209)
(155,188)(156,189)(157,190)(158,191)(159,192)(160,193)(161,194)(162,195)
(163,196)(164,197)(165,198);;
s2 := ( 1,111)( 2,121)( 3,120)( 4,119)( 5,118)( 6,117)( 7,116)( 8,115)
( 9,114)( 10,113)( 11,112)( 12,122)( 13,132)( 14,131)( 15,130)( 16,129)
( 17,128)( 18,127)( 19,126)( 20,125)( 21,124)( 22,123)( 23,133)( 24,143)
( 25,142)( 26,141)( 27,140)( 28,139)( 29,138)( 30,137)( 31,136)( 32,135)
( 33,134)( 34,144)( 35,154)( 36,153)( 37,152)( 38,151)( 39,150)( 40,149)
( 41,148)( 42,147)( 43,146)( 44,145)( 45,155)( 46,165)( 47,164)( 48,163)
( 49,162)( 50,161)( 51,160)( 52,159)( 53,158)( 54,157)( 55,156)( 56,166)
( 57,176)( 58,175)( 59,174)( 60,173)( 61,172)( 62,171)( 63,170)( 64,169)
( 65,168)( 66,167)( 67,177)( 68,187)( 69,186)( 70,185)( 71,184)( 72,183)
( 73,182)( 74,181)( 75,180)( 76,179)( 77,178)( 78,188)( 79,198)( 80,197)
( 81,196)( 82,195)( 83,194)( 84,193)( 85,192)( 86,191)( 87,190)( 88,189)
( 89,199)( 90,209)( 91,208)( 92,207)( 93,206)( 94,205)( 95,204)( 96,203)
( 97,202)( 98,201)( 99,200)(100,210)(101,220)(102,219)(103,218)(104,217)
(105,216)(106,215)(107,214)(108,213)(109,212)(110,211);;
s3 := ( 1, 2)( 3, 11)( 4, 10)( 5, 9)( 6, 8)( 12, 13)( 14, 22)( 15, 21)
( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)( 34, 35)
( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)( 49, 53)
( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67, 68)( 69, 77)
( 70, 76)( 71, 75)( 72, 74)( 78, 79)( 80, 88)( 81, 87)( 82, 86)( 83, 85)
( 89, 90)( 91, 99)( 92, 98)( 93, 97)( 94, 96)(100,101)(102,110)(103,109)
(104,108)(105,107)(111,112)(113,121)(114,120)(115,119)(116,118)(122,123)
(124,132)(125,131)(126,130)(127,129)(133,134)(135,143)(136,142)(137,141)
(138,140)(144,145)(146,154)(147,153)(148,152)(149,151)(155,156)(157,165)
(158,164)(159,163)(160,162)(166,167)(168,176)(169,175)(170,174)(171,173)
(177,178)(179,187)(180,186)(181,185)(182,184)(188,189)(190,198)(191,197)
(192,196)(193,195)(199,200)(201,209)(202,208)(203,207)(204,206)(210,211)
(212,220)(213,219)(214,218)(215,217);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(220)!( 12, 45)( 13, 46)( 14, 47)( 15, 48)( 16, 49)( 17, 50)( 18, 51)
( 19, 52)( 20, 53)( 21, 54)( 22, 55)( 23, 34)( 24, 35)( 25, 36)( 26, 37)
( 27, 38)( 28, 39)( 29, 40)( 30, 41)( 31, 42)( 32, 43)( 33, 44)( 67,100)
( 68,101)( 69,102)( 70,103)( 71,104)( 72,105)( 73,106)( 74,107)( 75,108)
( 76,109)( 77,110)( 78, 89)( 79, 90)( 80, 91)( 81, 92)( 82, 93)( 83, 94)
( 84, 95)( 85, 96)( 86, 97)( 87, 98)( 88, 99)(122,155)(123,156)(124,157)
(125,158)(126,159)(127,160)(128,161)(129,162)(130,163)(131,164)(132,165)
(133,144)(134,145)(135,146)(136,147)(137,148)(138,149)(139,150)(140,151)
(141,152)(142,153)(143,154)(177,210)(178,211)(179,212)(180,213)(181,214)
(182,215)(183,216)(184,217)(185,218)(186,219)(187,220)(188,199)(189,200)
(190,201)(191,202)(192,203)(193,204)(194,205)(195,206)(196,207)(197,208)
(198,209);
s1 := Sym(220)!( 1, 12)( 2, 13)( 3, 14)( 4, 15)( 5, 16)( 6, 17)( 7, 18)
( 8, 19)( 9, 20)( 10, 21)( 11, 22)( 23, 45)( 24, 46)( 25, 47)( 26, 48)
( 27, 49)( 28, 50)( 29, 51)( 30, 52)( 31, 53)( 32, 54)( 33, 55)( 56, 67)
( 57, 68)( 58, 69)( 59, 70)( 60, 71)( 61, 72)( 62, 73)( 63, 74)( 64, 75)
( 65, 76)( 66, 77)( 78,100)( 79,101)( 80,102)( 81,103)( 82,104)( 83,105)
( 84,106)( 85,107)( 86,108)( 87,109)( 88,110)(111,177)(112,178)(113,179)
(114,180)(115,181)(116,182)(117,183)(118,184)(119,185)(120,186)(121,187)
(122,166)(123,167)(124,168)(125,169)(126,170)(127,171)(128,172)(129,173)
(130,174)(131,175)(132,176)(133,210)(134,211)(135,212)(136,213)(137,214)
(138,215)(139,216)(140,217)(141,218)(142,219)(143,220)(144,199)(145,200)
(146,201)(147,202)(148,203)(149,204)(150,205)(151,206)(152,207)(153,208)
(154,209)(155,188)(156,189)(157,190)(158,191)(159,192)(160,193)(161,194)
(162,195)(163,196)(164,197)(165,198);
s2 := Sym(220)!( 1,111)( 2,121)( 3,120)( 4,119)( 5,118)( 6,117)( 7,116)
( 8,115)( 9,114)( 10,113)( 11,112)( 12,122)( 13,132)( 14,131)( 15,130)
( 16,129)( 17,128)( 18,127)( 19,126)( 20,125)( 21,124)( 22,123)( 23,133)
( 24,143)( 25,142)( 26,141)( 27,140)( 28,139)( 29,138)( 30,137)( 31,136)
( 32,135)( 33,134)( 34,144)( 35,154)( 36,153)( 37,152)( 38,151)( 39,150)
( 40,149)( 41,148)( 42,147)( 43,146)( 44,145)( 45,155)( 46,165)( 47,164)
( 48,163)( 49,162)( 50,161)( 51,160)( 52,159)( 53,158)( 54,157)( 55,156)
( 56,166)( 57,176)( 58,175)( 59,174)( 60,173)( 61,172)( 62,171)( 63,170)
( 64,169)( 65,168)( 66,167)( 67,177)( 68,187)( 69,186)( 70,185)( 71,184)
( 72,183)( 73,182)( 74,181)( 75,180)( 76,179)( 77,178)( 78,188)( 79,198)
( 80,197)( 81,196)( 82,195)( 83,194)( 84,193)( 85,192)( 86,191)( 87,190)
( 88,189)( 89,199)( 90,209)( 91,208)( 92,207)( 93,206)( 94,205)( 95,204)
( 96,203)( 97,202)( 98,201)( 99,200)(100,210)(101,220)(102,219)(103,218)
(104,217)(105,216)(106,215)(107,214)(108,213)(109,212)(110,211);
s3 := Sym(220)!( 1, 2)( 3, 11)( 4, 10)( 5, 9)( 6, 8)( 12, 13)( 14, 22)
( 15, 21)( 16, 20)( 17, 19)( 23, 24)( 25, 33)( 26, 32)( 27, 31)( 28, 30)
( 34, 35)( 36, 44)( 37, 43)( 38, 42)( 39, 41)( 45, 46)( 47, 55)( 48, 54)
( 49, 53)( 50, 52)( 56, 57)( 58, 66)( 59, 65)( 60, 64)( 61, 63)( 67, 68)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 78, 79)( 80, 88)( 81, 87)( 82, 86)
( 83, 85)( 89, 90)( 91, 99)( 92, 98)( 93, 97)( 94, 96)(100,101)(102,110)
(103,109)(104,108)(105,107)(111,112)(113,121)(114,120)(115,119)(116,118)
(122,123)(124,132)(125,131)(126,130)(127,129)(133,134)(135,143)(136,142)
(137,141)(138,140)(144,145)(146,154)(147,153)(148,152)(149,151)(155,156)
(157,165)(158,164)(159,163)(160,162)(166,167)(168,176)(169,175)(170,174)
(171,173)(177,178)(179,187)(180,186)(181,185)(182,184)(188,189)(190,198)
(191,197)(192,196)(193,195)(199,200)(201,209)(202,208)(203,207)(204,206)
(210,211)(212,220)(213,219)(214,218)(215,217);
poly := sub<Sym(220)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
References : None.
to this polytope