include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {11,2,10,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {11,2,10,4}*1760
if this polytope has a name.
Group : SmallGroup(1760,1190)
Rank : 5
Schlafli Type : {11,2,10,4}
Number of vertices, edges, etc : 11, 11, 10, 20, 4
Order of s0s1s2s3s4 : 220
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {11,2,10,2}*880
4-fold quotients : {11,2,5,2}*440
5-fold quotients : {11,2,2,4}*352
10-fold quotients : {11,2,2,2}*176
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s2 := (14,15)(17,18)(19,20)(22,23)(24,25)(26,27)(28,29)(30,31);;
s3 := (12,14)(13,22)(15,19)(16,17)(18,28)(21,26)(23,24)(25,29)(27,30);;
s4 := (12,13)(14,17)(15,18)(16,21)(19,24)(20,25)(22,26)(23,27)(28,30)(29,31);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11);
s1 := Sym(31)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10);
s2 := Sym(31)!(14,15)(17,18)(19,20)(22,23)(24,25)(26,27)(28,29)(30,31);
s3 := Sym(31)!(12,14)(13,22)(15,19)(16,17)(18,28)(21,26)(23,24)(25,29)(27,30);
s4 := Sym(31)!(12,13)(14,17)(15,18)(16,21)(19,24)(20,25)(22,26)(23,27)(28,30)
(29,31);
poly := sub<Sym(31)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s2*s3*s4*s3*s2*s3*s4*s3,
s3*s4*s3*s4*s3*s4*s3*s4, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope