Polytope of Type {222,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {222,4}*1776a
Also Known As : {222,4|2}. if this polytope has another name.
Group : SmallGroup(1776,228)
Rank : 3
Schlafli Type : {222,4}
Number of vertices, edges, etc : 222, 444, 4
Order of s0s1s2 : 444
Order of s0s1s2s1 : 2
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {222,2}*888
   3-fold quotients : {74,4}*592
   4-fold quotients : {111,2}*444
   6-fold quotients : {74,2}*296
   12-fold quotients : {37,2}*148
   37-fold quotients : {6,4}*48a
   74-fold quotients : {6,2}*24
   111-fold quotients : {2,4}*16
   148-fold quotients : {3,2}*12
   222-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)(  9, 30)
( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)( 17, 22)
( 18, 21)( 19, 20)( 38, 75)( 39,111)( 40,110)( 41,109)( 42,108)( 43,107)
( 44,106)( 45,105)( 46,104)( 47,103)( 48,102)( 49,101)( 50,100)( 51, 99)
( 52, 98)( 53, 97)( 54, 96)( 55, 95)( 56, 94)( 57, 93)( 58, 92)( 59, 91)
( 60, 90)( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)( 67, 83)
( 68, 82)( 69, 81)( 70, 80)( 71, 79)( 72, 78)( 73, 77)( 74, 76)(113,148)
(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,141)(121,140)
(122,139)(123,138)(124,137)(125,136)(126,135)(127,134)(128,133)(129,132)
(130,131)(149,186)(150,222)(151,221)(152,220)(153,219)(154,218)(155,217)
(156,216)(157,215)(158,214)(159,213)(160,212)(161,211)(162,210)(163,209)
(164,208)(165,207)(166,206)(167,205)(168,204)(169,203)(170,202)(171,201)
(172,200)(173,199)(174,198)(175,197)(176,196)(177,195)(178,194)(179,193)
(180,192)(181,191)(182,190)(183,189)(184,188)(185,187)(224,259)(225,258)
(226,257)(227,256)(228,255)(229,254)(230,253)(231,252)(232,251)(233,250)
(234,249)(235,248)(236,247)(237,246)(238,245)(239,244)(240,243)(241,242)
(260,297)(261,333)(262,332)(263,331)(264,330)(265,329)(266,328)(267,327)
(268,326)(269,325)(270,324)(271,323)(272,322)(273,321)(274,320)(275,319)
(276,318)(277,317)(278,316)(279,315)(280,314)(281,313)(282,312)(283,311)
(284,310)(285,309)(286,308)(287,307)(288,306)(289,305)(290,304)(291,303)
(292,302)(293,301)(294,300)(295,299)(296,298)(335,370)(336,369)(337,368)
(338,367)(339,366)(340,365)(341,364)(342,363)(343,362)(344,361)(345,360)
(346,359)(347,358)(348,357)(349,356)(350,355)(351,354)(352,353)(371,408)
(372,444)(373,443)(374,442)(375,441)(376,440)(377,439)(378,438)(379,437)
(380,436)(381,435)(382,434)(383,433)(384,432)(385,431)(386,430)(387,429)
(388,428)(389,427)(390,426)(391,425)(392,424)(393,423)(394,422)(395,421)
(396,420)(397,419)(398,418)(399,417)(400,416)(401,415)(402,414)(403,413)
(404,412)(405,411)(406,410)(407,409);;
s1 := (  1, 39)(  2, 38)(  3, 74)(  4, 73)(  5, 72)(  6, 71)(  7, 70)(  8, 69)
(  9, 68)( 10, 67)( 11, 66)( 12, 65)( 13, 64)( 14, 63)( 15, 62)( 16, 61)
( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 56)( 22, 55)( 23, 54)( 24, 53)
( 25, 52)( 26, 51)( 27, 50)( 28, 49)( 29, 48)( 30, 47)( 31, 46)( 32, 45)
( 33, 44)( 34, 43)( 35, 42)( 36, 41)( 37, 40)( 75, 76)( 77,111)( 78,110)
( 79,109)( 80,108)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)( 86,102)
( 87,101)( 88,100)( 89, 99)( 90, 98)( 91, 97)( 92, 96)( 93, 95)(112,150)
(113,149)(114,185)(115,184)(116,183)(117,182)(118,181)(119,180)(120,179)
(121,178)(122,177)(123,176)(124,175)(125,174)(126,173)(127,172)(128,171)
(129,170)(130,169)(131,168)(132,167)(133,166)(134,165)(135,164)(136,163)
(137,162)(138,161)(139,160)(140,159)(141,158)(142,157)(143,156)(144,155)
(145,154)(146,153)(147,152)(148,151)(186,187)(188,222)(189,221)(190,220)
(191,219)(192,218)(193,217)(194,216)(195,215)(196,214)(197,213)(198,212)
(199,211)(200,210)(201,209)(202,208)(203,207)(204,206)(223,372)(224,371)
(225,407)(226,406)(227,405)(228,404)(229,403)(230,402)(231,401)(232,400)
(233,399)(234,398)(235,397)(236,396)(237,395)(238,394)(239,393)(240,392)
(241,391)(242,390)(243,389)(244,388)(245,387)(246,386)(247,385)(248,384)
(249,383)(250,382)(251,381)(252,380)(253,379)(254,378)(255,377)(256,376)
(257,375)(258,374)(259,373)(260,335)(261,334)(262,370)(263,369)(264,368)
(265,367)(266,366)(267,365)(268,364)(269,363)(270,362)(271,361)(272,360)
(273,359)(274,358)(275,357)(276,356)(277,355)(278,354)(279,353)(280,352)
(281,351)(282,350)(283,349)(284,348)(285,347)(286,346)(287,345)(288,344)
(289,343)(290,342)(291,341)(292,340)(293,339)(294,338)(295,337)(296,336)
(297,409)(298,408)(299,444)(300,443)(301,442)(302,441)(303,440)(304,439)
(305,438)(306,437)(307,436)(308,435)(309,434)(310,433)(311,432)(312,431)
(313,430)(314,429)(315,428)(316,427)(317,426)(318,425)(319,424)(320,423)
(321,422)(322,421)(323,420)(324,419)(325,418)(326,417)(327,416)(328,415)
(329,414)(330,413)(331,412)(332,411)(333,410);;
s2 := (  1,223)(  2,224)(  3,225)(  4,226)(  5,227)(  6,228)(  7,229)(  8,230)
(  9,231)( 10,232)( 11,233)( 12,234)( 13,235)( 14,236)( 15,237)( 16,238)
( 17,239)( 18,240)( 19,241)( 20,242)( 21,243)( 22,244)( 23,245)( 24,246)
( 25,247)( 26,248)( 27,249)( 28,250)( 29,251)( 30,252)( 31,253)( 32,254)
( 33,255)( 34,256)( 35,257)( 36,258)( 37,259)( 38,260)( 39,261)( 40,262)
( 41,263)( 42,264)( 43,265)( 44,266)( 45,267)( 46,268)( 47,269)( 48,270)
( 49,271)( 50,272)( 51,273)( 52,274)( 53,275)( 54,276)( 55,277)( 56,278)
( 57,279)( 58,280)( 59,281)( 60,282)( 61,283)( 62,284)( 63,285)( 64,286)
( 65,287)( 66,288)( 67,289)( 68,290)( 69,291)( 70,292)( 71,293)( 72,294)
( 73,295)( 74,296)( 75,297)( 76,298)( 77,299)( 78,300)( 79,301)( 80,302)
( 81,303)( 82,304)( 83,305)( 84,306)( 85,307)( 86,308)( 87,309)( 88,310)
( 89,311)( 90,312)( 91,313)( 92,314)( 93,315)( 94,316)( 95,317)( 96,318)
( 97,319)( 98,320)( 99,321)(100,322)(101,323)(102,324)(103,325)(104,326)
(105,327)(106,328)(107,329)(108,330)(109,331)(110,332)(111,333)(112,334)
(113,335)(114,336)(115,337)(116,338)(117,339)(118,340)(119,341)(120,342)
(121,343)(122,344)(123,345)(124,346)(125,347)(126,348)(127,349)(128,350)
(129,351)(130,352)(131,353)(132,354)(133,355)(134,356)(135,357)(136,358)
(137,359)(138,360)(139,361)(140,362)(141,363)(142,364)(143,365)(144,366)
(145,367)(146,368)(147,369)(148,370)(149,371)(150,372)(151,373)(152,374)
(153,375)(154,376)(155,377)(156,378)(157,379)(158,380)(159,381)(160,382)
(161,383)(162,384)(163,385)(164,386)(165,387)(166,388)(167,389)(168,390)
(169,391)(170,392)(171,393)(172,394)(173,395)(174,396)(175,397)(176,398)
(177,399)(178,400)(179,401)(180,402)(181,403)(182,404)(183,405)(184,406)
(185,407)(186,408)(187,409)(188,410)(189,411)(190,412)(191,413)(192,414)
(193,415)(194,416)(195,417)(196,418)(197,419)(198,420)(199,421)(200,422)
(201,423)(202,424)(203,425)(204,426)(205,427)(206,428)(207,429)(208,430)
(209,431)(210,432)(211,433)(212,434)(213,435)(214,436)(215,437)(216,438)
(217,439)(218,440)(219,441)(220,442)(221,443)(222,444);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(444)!(  2, 37)(  3, 36)(  4, 35)(  5, 34)(  6, 33)(  7, 32)(  8, 31)
(  9, 30)( 10, 29)( 11, 28)( 12, 27)( 13, 26)( 14, 25)( 15, 24)( 16, 23)
( 17, 22)( 18, 21)( 19, 20)( 38, 75)( 39,111)( 40,110)( 41,109)( 42,108)
( 43,107)( 44,106)( 45,105)( 46,104)( 47,103)( 48,102)( 49,101)( 50,100)
( 51, 99)( 52, 98)( 53, 97)( 54, 96)( 55, 95)( 56, 94)( 57, 93)( 58, 92)
( 59, 91)( 60, 90)( 61, 89)( 62, 88)( 63, 87)( 64, 86)( 65, 85)( 66, 84)
( 67, 83)( 68, 82)( 69, 81)( 70, 80)( 71, 79)( 72, 78)( 73, 77)( 74, 76)
(113,148)(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,141)
(121,140)(122,139)(123,138)(124,137)(125,136)(126,135)(127,134)(128,133)
(129,132)(130,131)(149,186)(150,222)(151,221)(152,220)(153,219)(154,218)
(155,217)(156,216)(157,215)(158,214)(159,213)(160,212)(161,211)(162,210)
(163,209)(164,208)(165,207)(166,206)(167,205)(168,204)(169,203)(170,202)
(171,201)(172,200)(173,199)(174,198)(175,197)(176,196)(177,195)(178,194)
(179,193)(180,192)(181,191)(182,190)(183,189)(184,188)(185,187)(224,259)
(225,258)(226,257)(227,256)(228,255)(229,254)(230,253)(231,252)(232,251)
(233,250)(234,249)(235,248)(236,247)(237,246)(238,245)(239,244)(240,243)
(241,242)(260,297)(261,333)(262,332)(263,331)(264,330)(265,329)(266,328)
(267,327)(268,326)(269,325)(270,324)(271,323)(272,322)(273,321)(274,320)
(275,319)(276,318)(277,317)(278,316)(279,315)(280,314)(281,313)(282,312)
(283,311)(284,310)(285,309)(286,308)(287,307)(288,306)(289,305)(290,304)
(291,303)(292,302)(293,301)(294,300)(295,299)(296,298)(335,370)(336,369)
(337,368)(338,367)(339,366)(340,365)(341,364)(342,363)(343,362)(344,361)
(345,360)(346,359)(347,358)(348,357)(349,356)(350,355)(351,354)(352,353)
(371,408)(372,444)(373,443)(374,442)(375,441)(376,440)(377,439)(378,438)
(379,437)(380,436)(381,435)(382,434)(383,433)(384,432)(385,431)(386,430)
(387,429)(388,428)(389,427)(390,426)(391,425)(392,424)(393,423)(394,422)
(395,421)(396,420)(397,419)(398,418)(399,417)(400,416)(401,415)(402,414)
(403,413)(404,412)(405,411)(406,410)(407,409);
s1 := Sym(444)!(  1, 39)(  2, 38)(  3, 74)(  4, 73)(  5, 72)(  6, 71)(  7, 70)
(  8, 69)(  9, 68)( 10, 67)( 11, 66)( 12, 65)( 13, 64)( 14, 63)( 15, 62)
( 16, 61)( 17, 60)( 18, 59)( 19, 58)( 20, 57)( 21, 56)( 22, 55)( 23, 54)
( 24, 53)( 25, 52)( 26, 51)( 27, 50)( 28, 49)( 29, 48)( 30, 47)( 31, 46)
( 32, 45)( 33, 44)( 34, 43)( 35, 42)( 36, 41)( 37, 40)( 75, 76)( 77,111)
( 78,110)( 79,109)( 80,108)( 81,107)( 82,106)( 83,105)( 84,104)( 85,103)
( 86,102)( 87,101)( 88,100)( 89, 99)( 90, 98)( 91, 97)( 92, 96)( 93, 95)
(112,150)(113,149)(114,185)(115,184)(116,183)(117,182)(118,181)(119,180)
(120,179)(121,178)(122,177)(123,176)(124,175)(125,174)(126,173)(127,172)
(128,171)(129,170)(130,169)(131,168)(132,167)(133,166)(134,165)(135,164)
(136,163)(137,162)(138,161)(139,160)(140,159)(141,158)(142,157)(143,156)
(144,155)(145,154)(146,153)(147,152)(148,151)(186,187)(188,222)(189,221)
(190,220)(191,219)(192,218)(193,217)(194,216)(195,215)(196,214)(197,213)
(198,212)(199,211)(200,210)(201,209)(202,208)(203,207)(204,206)(223,372)
(224,371)(225,407)(226,406)(227,405)(228,404)(229,403)(230,402)(231,401)
(232,400)(233,399)(234,398)(235,397)(236,396)(237,395)(238,394)(239,393)
(240,392)(241,391)(242,390)(243,389)(244,388)(245,387)(246,386)(247,385)
(248,384)(249,383)(250,382)(251,381)(252,380)(253,379)(254,378)(255,377)
(256,376)(257,375)(258,374)(259,373)(260,335)(261,334)(262,370)(263,369)
(264,368)(265,367)(266,366)(267,365)(268,364)(269,363)(270,362)(271,361)
(272,360)(273,359)(274,358)(275,357)(276,356)(277,355)(278,354)(279,353)
(280,352)(281,351)(282,350)(283,349)(284,348)(285,347)(286,346)(287,345)
(288,344)(289,343)(290,342)(291,341)(292,340)(293,339)(294,338)(295,337)
(296,336)(297,409)(298,408)(299,444)(300,443)(301,442)(302,441)(303,440)
(304,439)(305,438)(306,437)(307,436)(308,435)(309,434)(310,433)(311,432)
(312,431)(313,430)(314,429)(315,428)(316,427)(317,426)(318,425)(319,424)
(320,423)(321,422)(322,421)(323,420)(324,419)(325,418)(326,417)(327,416)
(328,415)(329,414)(330,413)(331,412)(332,411)(333,410);
s2 := Sym(444)!(  1,223)(  2,224)(  3,225)(  4,226)(  5,227)(  6,228)(  7,229)
(  8,230)(  9,231)( 10,232)( 11,233)( 12,234)( 13,235)( 14,236)( 15,237)
( 16,238)( 17,239)( 18,240)( 19,241)( 20,242)( 21,243)( 22,244)( 23,245)
( 24,246)( 25,247)( 26,248)( 27,249)( 28,250)( 29,251)( 30,252)( 31,253)
( 32,254)( 33,255)( 34,256)( 35,257)( 36,258)( 37,259)( 38,260)( 39,261)
( 40,262)( 41,263)( 42,264)( 43,265)( 44,266)( 45,267)( 46,268)( 47,269)
( 48,270)( 49,271)( 50,272)( 51,273)( 52,274)( 53,275)( 54,276)( 55,277)
( 56,278)( 57,279)( 58,280)( 59,281)( 60,282)( 61,283)( 62,284)( 63,285)
( 64,286)( 65,287)( 66,288)( 67,289)( 68,290)( 69,291)( 70,292)( 71,293)
( 72,294)( 73,295)( 74,296)( 75,297)( 76,298)( 77,299)( 78,300)( 79,301)
( 80,302)( 81,303)( 82,304)( 83,305)( 84,306)( 85,307)( 86,308)( 87,309)
( 88,310)( 89,311)( 90,312)( 91,313)( 92,314)( 93,315)( 94,316)( 95,317)
( 96,318)( 97,319)( 98,320)( 99,321)(100,322)(101,323)(102,324)(103,325)
(104,326)(105,327)(106,328)(107,329)(108,330)(109,331)(110,332)(111,333)
(112,334)(113,335)(114,336)(115,337)(116,338)(117,339)(118,340)(119,341)
(120,342)(121,343)(122,344)(123,345)(124,346)(125,347)(126,348)(127,349)
(128,350)(129,351)(130,352)(131,353)(132,354)(133,355)(134,356)(135,357)
(136,358)(137,359)(138,360)(139,361)(140,362)(141,363)(142,364)(143,365)
(144,366)(145,367)(146,368)(147,369)(148,370)(149,371)(150,372)(151,373)
(152,374)(153,375)(154,376)(155,377)(156,378)(157,379)(158,380)(159,381)
(160,382)(161,383)(162,384)(163,385)(164,386)(165,387)(166,388)(167,389)
(168,390)(169,391)(170,392)(171,393)(172,394)(173,395)(174,396)(175,397)
(176,398)(177,399)(178,400)(179,401)(180,402)(181,403)(182,404)(183,405)
(184,406)(185,407)(186,408)(187,409)(188,410)(189,411)(190,412)(191,413)
(192,414)(193,415)(194,416)(195,417)(196,418)(197,419)(198,420)(199,421)
(200,422)(201,423)(202,424)(203,425)(204,426)(205,427)(206,428)(207,429)
(208,430)(209,431)(210,432)(211,433)(212,434)(213,435)(214,436)(215,437)
(216,438)(217,439)(218,440)(219,441)(220,442)(221,443)(222,444);
poly := sub<Sym(444)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1, 
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope