include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,2,28}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,2,28}*1792
if this polytope has a name.
Group : SmallGroup(1792,1044762)
Rank : 5
Schlafli Type : {2,8,2,28}
Number of vertices, edges, etc : 2, 8, 8, 28, 28
Order of s0s1s2s3s4 : 56
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,4,2,28}*896, {2,8,2,14}*896
4-fold quotients : {2,8,2,7}*448, {2,2,2,28}*448, {2,4,2,14}*448
7-fold quotients : {2,8,2,4}*256
8-fold quotients : {2,4,2,7}*224, {2,2,2,14}*224
14-fold quotients : {2,4,2,4}*128, {2,8,2,2}*128
16-fold quotients : {2,2,2,7}*112
28-fold quotients : {2,2,2,4}*64, {2,4,2,2}*64
56-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7)(8,9);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s3 := (12,13)(14,15)(17,20)(18,19)(21,22)(23,24)(25,28)(26,27)(29,30)(31,32)
(33,36)(34,35)(37,38);;
s4 := (11,17)(12,14)(13,23)(15,25)(16,19)(18,21)(20,31)(22,33)(24,27)(26,29)
(28,37)(30,34)(32,35)(36,38);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(38)!(1,2);
s1 := Sym(38)!(4,5)(6,7)(8,9);
s2 := Sym(38)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s3 := Sym(38)!(12,13)(14,15)(17,20)(18,19)(21,22)(23,24)(25,28)(26,27)(29,30)
(31,32)(33,36)(34,35)(37,38);
s4 := Sym(38)!(11,17)(12,14)(13,23)(15,25)(16,19)(18,21)(20,31)(22,33)(24,27)
(26,29)(28,37)(30,34)(32,35)(36,38);
poly := sub<Sym(38)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope