include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {28,4,2,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {28,4,2,2,2}*1792
if this polytope has a name.
Group : SmallGroup(1792,1076200)
Rank : 6
Schlafli Type : {28,4,2,2,2}
Number of vertices, edges, etc : 28, 56, 4, 2, 2, 2
Order of s0s1s2s3s4s5 : 28
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {28,2,2,2,2}*896, {14,4,2,2,2}*896
4-fold quotients : {14,2,2,2,2}*448
7-fold quotients : {4,4,2,2,2}*256
8-fold quotients : {7,2,2,2,2}*224
14-fold quotients : {2,4,2,2,2}*128, {4,2,2,2,2}*128
28-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)(23,28)
(24,27)(25,26)(29,43)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,50)(37,56)
(38,55)(39,54)(40,53)(41,52)(42,51);;
s1 := ( 1,30)( 2,29)( 3,35)( 4,34)( 5,33)( 6,32)( 7,31)( 8,37)( 9,36)(10,42)
(11,41)(12,40)(13,39)(14,38)(15,44)(16,43)(17,49)(18,48)(19,47)(20,46)(21,45)
(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52);;
s2 := (29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)(45,52)
(46,53)(47,54)(48,55)(49,56);;
s3 := (57,58);;
s4 := (59,60);;
s5 := (61,62);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(62)!( 2, 7)( 3, 6)( 4, 5)( 9,14)(10,13)(11,12)(16,21)(17,20)(18,19)
(23,28)(24,27)(25,26)(29,43)(30,49)(31,48)(32,47)(33,46)(34,45)(35,44)(36,50)
(37,56)(38,55)(39,54)(40,53)(41,52)(42,51);
s1 := Sym(62)!( 1,30)( 2,29)( 3,35)( 4,34)( 5,33)( 6,32)( 7,31)( 8,37)( 9,36)
(10,42)(11,41)(12,40)(13,39)(14,38)(15,44)(16,43)(17,49)(18,48)(19,47)(20,46)
(21,45)(22,51)(23,50)(24,56)(25,55)(26,54)(27,53)(28,52);
s2 := Sym(62)!(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42)(43,50)(44,51)
(45,52)(46,53)(47,54)(48,55)(49,56);
s3 := Sym(62)!(57,58);
s4 := Sym(62)!(59,60);
s5 := Sym(62)!(61,62);
poly := sub<Sym(62)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
to this polytope