include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,56,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,56,2}*1792
if this polytope has a name.
Group : SmallGroup(1792,1083343)
Rank : 6
Schlafli Type : {2,2,2,56,2}
Number of vertices, edges, etc : 2, 2, 2, 56, 56, 2
Order of s0s1s2s3s4s5 : 56
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,2,2,28,2}*896
4-fold quotients : {2,2,2,14,2}*448
7-fold quotients : {2,2,2,8,2}*256
8-fold quotients : {2,2,2,7,2}*224
14-fold quotients : {2,2,2,4,2}*128
28-fold quotients : {2,2,2,2,2}*64
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 8, 9)(10,11)(12,15)(13,17)(14,16)(18,19)(20,25)(21,27)(22,26)(23,29)
(24,28)(30,31)(33,40)(34,39)(35,42)(36,41)(37,44)(38,43)(45,46)(47,52)(48,51)
(49,54)(50,53)(55,56)(57,60)(58,59)(61,62);;
s4 := ( 7,13)( 8,10)( 9,21)(11,23)(12,16)(14,18)(15,33)(17,35)(19,37)(20,26)
(22,28)(24,30)(25,45)(27,47)(29,49)(31,38)(32,39)(34,41)(36,43)(40,55)(42,57)
(44,50)(46,51)(48,53)(52,61)(54,58)(56,59)(60,62);;
s5 := (63,64);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s4*s5*s4*s5, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(64)!(1,2);
s1 := Sym(64)!(3,4);
s2 := Sym(64)!(5,6);
s3 := Sym(64)!( 8, 9)(10,11)(12,15)(13,17)(14,16)(18,19)(20,25)(21,27)(22,26)
(23,29)(24,28)(30,31)(33,40)(34,39)(35,42)(36,41)(37,44)(38,43)(45,46)(47,52)
(48,51)(49,54)(50,53)(55,56)(57,60)(58,59)(61,62);
s4 := Sym(64)!( 7,13)( 8,10)( 9,21)(11,23)(12,16)(14,18)(15,33)(17,35)(19,37)
(20,26)(22,28)(24,30)(25,45)(27,47)(29,49)(31,38)(32,39)(34,41)(36,43)(40,55)
(42,57)(44,50)(46,51)(48,53)(52,61)(54,58)(56,59)(60,62);
s5 := Sym(64)!(63,64);
poly := sub<Sym(64)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope