Polytope of Type {16,28,2}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {16,28,2}*1792a
if this polytope has a name.
Group : SmallGroup(1792,323305)
Rank : 4
Schlafli Type : {16,28,2}
Number of vertices, edges, etc : 16, 224, 28, 2
Order of s0s1s2s3 : 112
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {8,28,2}*896a, {16,14,2}*896
   4-fold quotients : {4,28,2}*448, {8,14,2}*448
   7-fold quotients : {16,4,2}*256a
   8-fold quotients : {2,28,2}*224, {4,14,2}*224
   14-fold quotients : {8,4,2}*128a, {16,2,2}*128
   16-fold quotients : {2,14,2}*112
   28-fold quotients : {4,4,2}*64, {8,2,2}*64
   32-fold quotients : {2,7,2}*56
   56-fold quotients : {2,4,2}*32, {4,2,2}*32
   112-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  1,225)(  2,226)(  3,227)(  4,228)(  5,229)(  6,230)(  7,231)(  8,232)
(  9,233)( 10,234)( 11,235)( 12,236)( 13,237)( 14,238)( 15,246)( 16,247)
( 17,248)( 18,249)( 19,250)( 20,251)( 21,252)( 22,239)( 23,240)( 24,241)
( 25,242)( 26,243)( 27,244)( 28,245)( 29,253)( 30,254)( 31,255)( 32,256)
( 33,257)( 34,258)( 35,259)( 36,260)( 37,261)( 38,262)( 39,263)( 40,264)
( 41,265)( 42,266)( 43,274)( 44,275)( 45,276)( 46,277)( 47,278)( 48,279)
( 49,280)( 50,267)( 51,268)( 52,269)( 53,270)( 54,271)( 55,272)( 56,273)
( 57,295)( 58,296)( 59,297)( 60,298)( 61,299)( 62,300)( 63,301)( 64,302)
( 65,303)( 66,304)( 67,305)( 68,306)( 69,307)( 70,308)( 71,281)( 72,282)
( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,289)( 80,290)
( 81,291)( 82,292)( 83,293)( 84,294)( 85,323)( 86,324)( 87,325)( 88,326)
( 89,327)( 90,328)( 91,329)( 92,330)( 93,331)( 94,332)( 95,333)( 96,334)
( 97,335)( 98,336)( 99,309)(100,310)(101,311)(102,312)(103,313)(104,314)
(105,315)(106,316)(107,317)(108,318)(109,319)(110,320)(111,321)(112,322)
(113,337)(114,338)(115,339)(116,340)(117,341)(118,342)(119,343)(120,344)
(121,345)(122,346)(123,347)(124,348)(125,349)(126,350)(127,358)(128,359)
(129,360)(130,361)(131,362)(132,363)(133,364)(134,351)(135,352)(136,353)
(137,354)(138,355)(139,356)(140,357)(141,365)(142,366)(143,367)(144,368)
(145,369)(146,370)(147,371)(148,372)(149,373)(150,374)(151,375)(152,376)
(153,377)(154,378)(155,386)(156,387)(157,388)(158,389)(159,390)(160,391)
(161,392)(162,379)(163,380)(164,381)(165,382)(166,383)(167,384)(168,385)
(169,407)(170,408)(171,409)(172,410)(173,411)(174,412)(175,413)(176,414)
(177,415)(178,416)(179,417)(180,418)(181,419)(182,420)(183,393)(184,394)
(185,395)(186,396)(187,397)(188,398)(189,399)(190,400)(191,401)(192,402)
(193,403)(194,404)(195,405)(196,406)(197,435)(198,436)(199,437)(200,438)
(201,439)(202,440)(203,441)(204,442)(205,443)(206,444)(207,445)(208,446)
(209,447)(210,448)(211,421)(212,422)(213,423)(214,424)(215,425)(216,426)
(217,427)(218,428)(219,429)(220,430)(221,431)(222,432)(223,433)(224,434);;
s1 := (  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)( 16, 28)
( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 30, 35)( 31, 34)( 32, 33)
( 37, 42)( 38, 41)( 39, 40)( 43, 50)( 44, 56)( 45, 55)( 46, 54)( 47, 53)
( 48, 52)( 49, 51)( 57, 71)( 58, 77)( 59, 76)( 60, 75)( 61, 74)( 62, 73)
( 63, 72)( 64, 78)( 65, 84)( 66, 83)( 67, 82)( 68, 81)( 69, 80)( 70, 79)
( 85, 99)( 86,105)( 87,104)( 88,103)( 89,102)( 90,101)( 91,100)( 92,106)
( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)( 98,107)(113,141)(114,147)
(115,146)(116,145)(117,144)(118,143)(119,142)(120,148)(121,154)(122,153)
(123,152)(124,151)(125,150)(126,149)(127,162)(128,168)(129,167)(130,166)
(131,165)(132,164)(133,163)(134,155)(135,161)(136,160)(137,159)(138,158)
(139,157)(140,156)(169,211)(170,217)(171,216)(172,215)(173,214)(174,213)
(175,212)(176,218)(177,224)(178,223)(179,222)(180,221)(181,220)(182,219)
(183,197)(184,203)(185,202)(186,201)(187,200)(188,199)(189,198)(190,204)
(191,210)(192,209)(193,208)(194,207)(195,206)(196,205)(225,281)(226,287)
(227,286)(228,285)(229,284)(230,283)(231,282)(232,288)(233,294)(234,293)
(235,292)(236,291)(237,290)(238,289)(239,302)(240,308)(241,307)(242,306)
(243,305)(244,304)(245,303)(246,295)(247,301)(248,300)(249,299)(250,298)
(251,297)(252,296)(253,309)(254,315)(255,314)(256,313)(257,312)(258,311)
(259,310)(260,316)(261,322)(262,321)(263,320)(264,319)(265,318)(266,317)
(267,330)(268,336)(269,335)(270,334)(271,333)(272,332)(273,331)(274,323)
(275,329)(276,328)(277,327)(278,326)(279,325)(280,324)(337,421)(338,427)
(339,426)(340,425)(341,424)(342,423)(343,422)(344,428)(345,434)(346,433)
(347,432)(348,431)(349,430)(350,429)(351,442)(352,448)(353,447)(354,446)
(355,445)(356,444)(357,443)(358,435)(359,441)(360,440)(361,439)(362,438)
(363,437)(364,436)(365,393)(366,399)(367,398)(368,397)(369,396)(370,395)
(371,394)(372,400)(373,406)(374,405)(375,404)(376,403)(377,402)(378,401)
(379,414)(380,420)(381,419)(382,418)(383,417)(384,416)(385,415)(386,407)
(387,413)(388,412)(389,411)(390,410)(391,409)(392,408);;
s2 := (  1,114)(  2,113)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)(  8,121)
(  9,120)( 10,126)( 11,125)( 12,124)( 13,123)( 14,122)( 15,128)( 16,127)
( 17,133)( 18,132)( 19,131)( 20,130)( 21,129)( 22,135)( 23,134)( 24,140)
( 25,139)( 26,138)( 27,137)( 28,136)( 29,142)( 30,141)( 31,147)( 32,146)
( 33,145)( 34,144)( 35,143)( 36,149)( 37,148)( 38,154)( 39,153)( 40,152)
( 41,151)( 42,150)( 43,156)( 44,155)( 45,161)( 46,160)( 47,159)( 48,158)
( 49,157)( 50,163)( 51,162)( 52,168)( 53,167)( 54,166)( 55,165)( 56,164)
( 57,170)( 58,169)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)( 64,177)
( 65,176)( 66,182)( 67,181)( 68,180)( 69,179)( 70,178)( 71,184)( 72,183)
( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,191)( 79,190)( 80,196)
( 81,195)( 82,194)( 83,193)( 84,192)( 85,198)( 86,197)( 87,203)( 88,202)
( 89,201)( 90,200)( 91,199)( 92,205)( 93,204)( 94,210)( 95,209)( 96,208)
( 97,207)( 98,206)( 99,212)(100,211)(101,217)(102,216)(103,215)(104,214)
(105,213)(106,219)(107,218)(108,224)(109,223)(110,222)(111,221)(112,220)
(225,338)(226,337)(227,343)(228,342)(229,341)(230,340)(231,339)(232,345)
(233,344)(234,350)(235,349)(236,348)(237,347)(238,346)(239,352)(240,351)
(241,357)(242,356)(243,355)(244,354)(245,353)(246,359)(247,358)(248,364)
(249,363)(250,362)(251,361)(252,360)(253,366)(254,365)(255,371)(256,370)
(257,369)(258,368)(259,367)(260,373)(261,372)(262,378)(263,377)(264,376)
(265,375)(266,374)(267,380)(268,379)(269,385)(270,384)(271,383)(272,382)
(273,381)(274,387)(275,386)(276,392)(277,391)(278,390)(279,389)(280,388)
(281,394)(282,393)(283,399)(284,398)(285,397)(286,396)(287,395)(288,401)
(289,400)(290,406)(291,405)(292,404)(293,403)(294,402)(295,408)(296,407)
(297,413)(298,412)(299,411)(300,410)(301,409)(302,415)(303,414)(304,420)
(305,419)(306,418)(307,417)(308,416)(309,422)(310,421)(311,427)(312,426)
(313,425)(314,424)(315,423)(316,429)(317,428)(318,434)(319,433)(320,432)
(321,431)(322,430)(323,436)(324,435)(325,441)(326,440)(327,439)(328,438)
(329,437)(330,443)(331,442)(332,448)(333,447)(334,446)(335,445)(336,444);;
s3 := (449,450);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(450)!(  1,225)(  2,226)(  3,227)(  4,228)(  5,229)(  6,230)(  7,231)
(  8,232)(  9,233)( 10,234)( 11,235)( 12,236)( 13,237)( 14,238)( 15,246)
( 16,247)( 17,248)( 18,249)( 19,250)( 20,251)( 21,252)( 22,239)( 23,240)
( 24,241)( 25,242)( 26,243)( 27,244)( 28,245)( 29,253)( 30,254)( 31,255)
( 32,256)( 33,257)( 34,258)( 35,259)( 36,260)( 37,261)( 38,262)( 39,263)
( 40,264)( 41,265)( 42,266)( 43,274)( 44,275)( 45,276)( 46,277)( 47,278)
( 48,279)( 49,280)( 50,267)( 51,268)( 52,269)( 53,270)( 54,271)( 55,272)
( 56,273)( 57,295)( 58,296)( 59,297)( 60,298)( 61,299)( 62,300)( 63,301)
( 64,302)( 65,303)( 66,304)( 67,305)( 68,306)( 69,307)( 70,308)( 71,281)
( 72,282)( 73,283)( 74,284)( 75,285)( 76,286)( 77,287)( 78,288)( 79,289)
( 80,290)( 81,291)( 82,292)( 83,293)( 84,294)( 85,323)( 86,324)( 87,325)
( 88,326)( 89,327)( 90,328)( 91,329)( 92,330)( 93,331)( 94,332)( 95,333)
( 96,334)( 97,335)( 98,336)( 99,309)(100,310)(101,311)(102,312)(103,313)
(104,314)(105,315)(106,316)(107,317)(108,318)(109,319)(110,320)(111,321)
(112,322)(113,337)(114,338)(115,339)(116,340)(117,341)(118,342)(119,343)
(120,344)(121,345)(122,346)(123,347)(124,348)(125,349)(126,350)(127,358)
(128,359)(129,360)(130,361)(131,362)(132,363)(133,364)(134,351)(135,352)
(136,353)(137,354)(138,355)(139,356)(140,357)(141,365)(142,366)(143,367)
(144,368)(145,369)(146,370)(147,371)(148,372)(149,373)(150,374)(151,375)
(152,376)(153,377)(154,378)(155,386)(156,387)(157,388)(158,389)(159,390)
(160,391)(161,392)(162,379)(163,380)(164,381)(165,382)(166,383)(167,384)
(168,385)(169,407)(170,408)(171,409)(172,410)(173,411)(174,412)(175,413)
(176,414)(177,415)(178,416)(179,417)(180,418)(181,419)(182,420)(183,393)
(184,394)(185,395)(186,396)(187,397)(188,398)(189,399)(190,400)(191,401)
(192,402)(193,403)(194,404)(195,405)(196,406)(197,435)(198,436)(199,437)
(200,438)(201,439)(202,440)(203,441)(204,442)(205,443)(206,444)(207,445)
(208,446)(209,447)(210,448)(211,421)(212,422)(213,423)(214,424)(215,425)
(216,426)(217,427)(218,428)(219,429)(220,430)(221,431)(222,432)(223,433)
(224,434);
s1 := Sym(450)!(  2,  7)(  3,  6)(  4,  5)(  9, 14)( 10, 13)( 11, 12)( 15, 22)
( 16, 28)( 17, 27)( 18, 26)( 19, 25)( 20, 24)( 21, 23)( 30, 35)( 31, 34)
( 32, 33)( 37, 42)( 38, 41)( 39, 40)( 43, 50)( 44, 56)( 45, 55)( 46, 54)
( 47, 53)( 48, 52)( 49, 51)( 57, 71)( 58, 77)( 59, 76)( 60, 75)( 61, 74)
( 62, 73)( 63, 72)( 64, 78)( 65, 84)( 66, 83)( 67, 82)( 68, 81)( 69, 80)
( 70, 79)( 85, 99)( 86,105)( 87,104)( 88,103)( 89,102)( 90,101)( 91,100)
( 92,106)( 93,112)( 94,111)( 95,110)( 96,109)( 97,108)( 98,107)(113,141)
(114,147)(115,146)(116,145)(117,144)(118,143)(119,142)(120,148)(121,154)
(122,153)(123,152)(124,151)(125,150)(126,149)(127,162)(128,168)(129,167)
(130,166)(131,165)(132,164)(133,163)(134,155)(135,161)(136,160)(137,159)
(138,158)(139,157)(140,156)(169,211)(170,217)(171,216)(172,215)(173,214)
(174,213)(175,212)(176,218)(177,224)(178,223)(179,222)(180,221)(181,220)
(182,219)(183,197)(184,203)(185,202)(186,201)(187,200)(188,199)(189,198)
(190,204)(191,210)(192,209)(193,208)(194,207)(195,206)(196,205)(225,281)
(226,287)(227,286)(228,285)(229,284)(230,283)(231,282)(232,288)(233,294)
(234,293)(235,292)(236,291)(237,290)(238,289)(239,302)(240,308)(241,307)
(242,306)(243,305)(244,304)(245,303)(246,295)(247,301)(248,300)(249,299)
(250,298)(251,297)(252,296)(253,309)(254,315)(255,314)(256,313)(257,312)
(258,311)(259,310)(260,316)(261,322)(262,321)(263,320)(264,319)(265,318)
(266,317)(267,330)(268,336)(269,335)(270,334)(271,333)(272,332)(273,331)
(274,323)(275,329)(276,328)(277,327)(278,326)(279,325)(280,324)(337,421)
(338,427)(339,426)(340,425)(341,424)(342,423)(343,422)(344,428)(345,434)
(346,433)(347,432)(348,431)(349,430)(350,429)(351,442)(352,448)(353,447)
(354,446)(355,445)(356,444)(357,443)(358,435)(359,441)(360,440)(361,439)
(362,438)(363,437)(364,436)(365,393)(366,399)(367,398)(368,397)(369,396)
(370,395)(371,394)(372,400)(373,406)(374,405)(375,404)(376,403)(377,402)
(378,401)(379,414)(380,420)(381,419)(382,418)(383,417)(384,416)(385,415)
(386,407)(387,413)(388,412)(389,411)(390,410)(391,409)(392,408);
s2 := Sym(450)!(  1,114)(  2,113)(  3,119)(  4,118)(  5,117)(  6,116)(  7,115)
(  8,121)(  9,120)( 10,126)( 11,125)( 12,124)( 13,123)( 14,122)( 15,128)
( 16,127)( 17,133)( 18,132)( 19,131)( 20,130)( 21,129)( 22,135)( 23,134)
( 24,140)( 25,139)( 26,138)( 27,137)( 28,136)( 29,142)( 30,141)( 31,147)
( 32,146)( 33,145)( 34,144)( 35,143)( 36,149)( 37,148)( 38,154)( 39,153)
( 40,152)( 41,151)( 42,150)( 43,156)( 44,155)( 45,161)( 46,160)( 47,159)
( 48,158)( 49,157)( 50,163)( 51,162)( 52,168)( 53,167)( 54,166)( 55,165)
( 56,164)( 57,170)( 58,169)( 59,175)( 60,174)( 61,173)( 62,172)( 63,171)
( 64,177)( 65,176)( 66,182)( 67,181)( 68,180)( 69,179)( 70,178)( 71,184)
( 72,183)( 73,189)( 74,188)( 75,187)( 76,186)( 77,185)( 78,191)( 79,190)
( 80,196)( 81,195)( 82,194)( 83,193)( 84,192)( 85,198)( 86,197)( 87,203)
( 88,202)( 89,201)( 90,200)( 91,199)( 92,205)( 93,204)( 94,210)( 95,209)
( 96,208)( 97,207)( 98,206)( 99,212)(100,211)(101,217)(102,216)(103,215)
(104,214)(105,213)(106,219)(107,218)(108,224)(109,223)(110,222)(111,221)
(112,220)(225,338)(226,337)(227,343)(228,342)(229,341)(230,340)(231,339)
(232,345)(233,344)(234,350)(235,349)(236,348)(237,347)(238,346)(239,352)
(240,351)(241,357)(242,356)(243,355)(244,354)(245,353)(246,359)(247,358)
(248,364)(249,363)(250,362)(251,361)(252,360)(253,366)(254,365)(255,371)
(256,370)(257,369)(258,368)(259,367)(260,373)(261,372)(262,378)(263,377)
(264,376)(265,375)(266,374)(267,380)(268,379)(269,385)(270,384)(271,383)
(272,382)(273,381)(274,387)(275,386)(276,392)(277,391)(278,390)(279,389)
(280,388)(281,394)(282,393)(283,399)(284,398)(285,397)(286,396)(287,395)
(288,401)(289,400)(290,406)(291,405)(292,404)(293,403)(294,402)(295,408)
(296,407)(297,413)(298,412)(299,411)(300,410)(301,409)(302,415)(303,414)
(304,420)(305,419)(306,418)(307,417)(308,416)(309,422)(310,421)(311,427)
(312,426)(313,425)(314,424)(315,423)(316,429)(317,428)(318,434)(319,433)
(320,432)(321,431)(322,430)(323,436)(324,435)(325,441)(326,440)(327,439)
(328,438)(329,437)(330,443)(331,442)(332,448)(333,447)(334,446)(335,445)
(336,444);
s3 := Sym(450)!(449,450);
poly := sub<Sym(450)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope