Polytope of Type {5,10,2,9}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,10,2,9}*1800
if this polytope has a name.
Group : SmallGroup(1800,296)
Rank : 5
Schlafli Type : {5,10,2,9}
Number of vertices, edges, etc : 5, 25, 10, 9, 9
Order of s0s1s2s3s4 : 90
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {5,10,2,3}*600
   5-fold quotients : {5,2,2,9}*360
   15-fold quotients : {5,2,2,3}*120
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,13)(14,19)(15,18)(16,21)(17,20)
(22,25)(23,24);;
s1 := ( 1, 7)( 2, 4)( 3,14)( 5,16)( 6,10)( 8,12)( 9,18)(11,22)(13,17)(15,20)
(19,24)(21,23);;
s2 := ( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25);;
s3 := (27,28)(29,30)(31,32)(33,34);;
s4 := (26,27)(28,29)(30,31)(32,33);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(34)!( 2, 3)( 4, 5)( 6, 9)( 7,11)( 8,10)(12,13)(14,19)(15,18)(16,21)
(17,20)(22,25)(23,24);
s1 := Sym(34)!( 1, 7)( 2, 4)( 3,14)( 5,16)( 6,10)( 8,12)( 9,18)(11,22)(13,17)
(15,20)(19,24)(21,23);
s2 := Sym(34)!( 4, 5)( 7, 8)(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)
(24,25);
s3 := Sym(34)!(27,28)(29,30)(31,32)(33,34);
s4 := Sym(34)!(26,27)(28,29)(30,31)(32,33);
poly := sub<Sym(34)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3, 
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s2*s0*s1*s2*s1*s2*s0*s1*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope