Polytope of Type {2,450}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,450}*1800
if this polytope has a name.
Group : SmallGroup(1800,49)
Rank : 3
Schlafli Type : {2,450}
Number of vertices, edges, etc : 2, 450, 450
Order of s0s1s2 : 450
Order of s0s1s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,225}*900
   3-fold quotients : {2,150}*600
   5-fold quotients : {2,90}*360
   6-fold quotients : {2,75}*300
   9-fold quotients : {2,50}*200
   10-fold quotients : {2,45}*180
   15-fold quotients : {2,30}*120
   18-fold quotients : {2,25}*100
   25-fold quotients : {2,18}*72
   30-fold quotients : {2,15}*60
   45-fold quotients : {2,10}*40
   50-fold quotients : {2,9}*36
   75-fold quotients : {2,6}*24
   90-fold quotients : {2,5}*20
   150-fold quotients : {2,3}*12
   225-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (  4,  7)(  5,  6)(  8, 13)(  9, 17)( 10, 16)( 11, 15)( 12, 14)( 18, 67)
( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 77)( 24, 76)( 25, 75)( 26, 74)
( 27, 73)( 28, 72)( 29, 71)( 30, 70)( 31, 69)( 32, 68)( 33, 52)( 34, 51)
( 35, 50)( 36, 49)( 37, 48)( 38, 62)( 39, 61)( 40, 60)( 41, 59)( 42, 58)
( 43, 57)( 44, 56)( 45, 55)( 46, 54)( 47, 53)( 78,158)( 79,162)( 80,161)
( 81,160)( 82,159)( 83,153)( 84,157)( 85,156)( 86,155)( 87,154)( 88,163)
( 89,167)( 90,166)( 91,165)( 92,164)( 93,222)( 94,221)( 95,220)( 96,219)
( 97,218)( 98,217)( 99,216)(100,215)(101,214)(102,213)(103,227)(104,226)
(105,225)(106,224)(107,223)(108,207)(109,206)(110,205)(111,204)(112,203)
(113,202)(114,201)(115,200)(116,199)(117,198)(118,212)(119,211)(120,210)
(121,209)(122,208)(123,192)(124,191)(125,190)(126,189)(127,188)(128,187)
(129,186)(130,185)(131,184)(132,183)(133,197)(134,196)(135,195)(136,194)
(137,193)(138,177)(139,176)(140,175)(141,174)(142,173)(143,172)(144,171)
(145,170)(146,169)(147,168)(148,182)(149,181)(150,180)(151,179)(152,178)
(229,232)(230,231)(233,238)(234,242)(235,241)(236,240)(237,239)(243,292)
(244,291)(245,290)(246,289)(247,288)(248,302)(249,301)(250,300)(251,299)
(252,298)(253,297)(254,296)(255,295)(256,294)(257,293)(258,277)(259,276)
(260,275)(261,274)(262,273)(263,287)(264,286)(265,285)(266,284)(267,283)
(268,282)(269,281)(270,280)(271,279)(272,278)(303,383)(304,387)(305,386)
(306,385)(307,384)(308,378)(309,382)(310,381)(311,380)(312,379)(313,388)
(314,392)(315,391)(316,390)(317,389)(318,447)(319,446)(320,445)(321,444)
(322,443)(323,442)(324,441)(325,440)(326,439)(327,438)(328,452)(329,451)
(330,450)(331,449)(332,448)(333,432)(334,431)(335,430)(336,429)(337,428)
(338,427)(339,426)(340,425)(341,424)(342,423)(343,437)(344,436)(345,435)
(346,434)(347,433)(348,417)(349,416)(350,415)(351,414)(352,413)(353,412)
(354,411)(355,410)(356,409)(357,408)(358,422)(359,421)(360,420)(361,419)
(362,418)(363,402)(364,401)(365,400)(366,399)(367,398)(368,397)(369,396)
(370,395)(371,394)(372,393)(373,407)(374,406)(375,405)(376,404)(377,403);;
s2 := (  3,318)(  4,322)(  5,321)(  6,320)(  7,319)(  8,328)(  9,332)( 10,331)
( 11,330)( 12,329)( 13,323)( 14,327)( 15,326)( 16,325)( 17,324)( 18,303)
( 19,307)( 20,306)( 21,305)( 22,304)( 23,313)( 24,317)( 25,316)( 26,315)
( 27,314)( 28,308)( 29,312)( 30,311)( 31,310)( 32,309)( 33,367)( 34,366)
( 35,365)( 36,364)( 37,363)( 38,377)( 39,376)( 40,375)( 41,374)( 42,373)
( 43,372)( 44,371)( 45,370)( 46,369)( 47,368)( 48,352)( 49,351)( 50,350)
( 51,349)( 52,348)( 53,362)( 54,361)( 55,360)( 56,359)( 57,358)( 58,357)
( 59,356)( 60,355)( 61,354)( 62,353)( 63,337)( 64,336)( 65,335)( 66,334)
( 67,333)( 68,347)( 69,346)( 70,345)( 71,344)( 72,343)( 73,342)( 74,341)
( 75,340)( 76,339)( 77,338)( 78,243)( 79,247)( 80,246)( 81,245)( 82,244)
( 83,253)( 84,257)( 85,256)( 86,255)( 87,254)( 88,248)( 89,252)( 90,251)
( 91,250)( 92,249)( 93,228)( 94,232)( 95,231)( 96,230)( 97,229)( 98,238)
( 99,242)(100,241)(101,240)(102,239)(103,233)(104,237)(105,236)(106,235)
(107,234)(108,292)(109,291)(110,290)(111,289)(112,288)(113,302)(114,301)
(115,300)(116,299)(117,298)(118,297)(119,296)(120,295)(121,294)(122,293)
(123,277)(124,276)(125,275)(126,274)(127,273)(128,287)(129,286)(130,285)
(131,284)(132,283)(133,282)(134,281)(135,280)(136,279)(137,278)(138,262)
(139,261)(140,260)(141,259)(142,258)(143,272)(144,271)(145,270)(146,269)
(147,268)(148,267)(149,266)(150,265)(151,264)(152,263)(153,398)(154,402)
(155,401)(156,400)(157,399)(158,393)(159,397)(160,396)(161,395)(162,394)
(163,403)(164,407)(165,406)(166,405)(167,404)(168,383)(169,387)(170,386)
(171,385)(172,384)(173,378)(174,382)(175,381)(176,380)(177,379)(178,388)
(179,392)(180,391)(181,390)(182,389)(183,447)(184,446)(185,445)(186,444)
(187,443)(188,442)(189,441)(190,440)(191,439)(192,438)(193,452)(194,451)
(195,450)(196,449)(197,448)(198,432)(199,431)(200,430)(201,429)(202,428)
(203,427)(204,426)(205,425)(206,424)(207,423)(208,437)(209,436)(210,435)
(211,434)(212,433)(213,417)(214,416)(215,415)(216,414)(217,413)(218,412)
(219,411)(220,410)(221,409)(222,408)(223,422)(224,421)(225,420)(226,419)
(227,418);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2, 
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(452)!(1,2);
s1 := Sym(452)!(  4,  7)(  5,  6)(  8, 13)(  9, 17)( 10, 16)( 11, 15)( 12, 14)
( 18, 67)( 19, 66)( 20, 65)( 21, 64)( 22, 63)( 23, 77)( 24, 76)( 25, 75)
( 26, 74)( 27, 73)( 28, 72)( 29, 71)( 30, 70)( 31, 69)( 32, 68)( 33, 52)
( 34, 51)( 35, 50)( 36, 49)( 37, 48)( 38, 62)( 39, 61)( 40, 60)( 41, 59)
( 42, 58)( 43, 57)( 44, 56)( 45, 55)( 46, 54)( 47, 53)( 78,158)( 79,162)
( 80,161)( 81,160)( 82,159)( 83,153)( 84,157)( 85,156)( 86,155)( 87,154)
( 88,163)( 89,167)( 90,166)( 91,165)( 92,164)( 93,222)( 94,221)( 95,220)
( 96,219)( 97,218)( 98,217)( 99,216)(100,215)(101,214)(102,213)(103,227)
(104,226)(105,225)(106,224)(107,223)(108,207)(109,206)(110,205)(111,204)
(112,203)(113,202)(114,201)(115,200)(116,199)(117,198)(118,212)(119,211)
(120,210)(121,209)(122,208)(123,192)(124,191)(125,190)(126,189)(127,188)
(128,187)(129,186)(130,185)(131,184)(132,183)(133,197)(134,196)(135,195)
(136,194)(137,193)(138,177)(139,176)(140,175)(141,174)(142,173)(143,172)
(144,171)(145,170)(146,169)(147,168)(148,182)(149,181)(150,180)(151,179)
(152,178)(229,232)(230,231)(233,238)(234,242)(235,241)(236,240)(237,239)
(243,292)(244,291)(245,290)(246,289)(247,288)(248,302)(249,301)(250,300)
(251,299)(252,298)(253,297)(254,296)(255,295)(256,294)(257,293)(258,277)
(259,276)(260,275)(261,274)(262,273)(263,287)(264,286)(265,285)(266,284)
(267,283)(268,282)(269,281)(270,280)(271,279)(272,278)(303,383)(304,387)
(305,386)(306,385)(307,384)(308,378)(309,382)(310,381)(311,380)(312,379)
(313,388)(314,392)(315,391)(316,390)(317,389)(318,447)(319,446)(320,445)
(321,444)(322,443)(323,442)(324,441)(325,440)(326,439)(327,438)(328,452)
(329,451)(330,450)(331,449)(332,448)(333,432)(334,431)(335,430)(336,429)
(337,428)(338,427)(339,426)(340,425)(341,424)(342,423)(343,437)(344,436)
(345,435)(346,434)(347,433)(348,417)(349,416)(350,415)(351,414)(352,413)
(353,412)(354,411)(355,410)(356,409)(357,408)(358,422)(359,421)(360,420)
(361,419)(362,418)(363,402)(364,401)(365,400)(366,399)(367,398)(368,397)
(369,396)(370,395)(371,394)(372,393)(373,407)(374,406)(375,405)(376,404)
(377,403);
s2 := Sym(452)!(  3,318)(  4,322)(  5,321)(  6,320)(  7,319)(  8,328)(  9,332)
( 10,331)( 11,330)( 12,329)( 13,323)( 14,327)( 15,326)( 16,325)( 17,324)
( 18,303)( 19,307)( 20,306)( 21,305)( 22,304)( 23,313)( 24,317)( 25,316)
( 26,315)( 27,314)( 28,308)( 29,312)( 30,311)( 31,310)( 32,309)( 33,367)
( 34,366)( 35,365)( 36,364)( 37,363)( 38,377)( 39,376)( 40,375)( 41,374)
( 42,373)( 43,372)( 44,371)( 45,370)( 46,369)( 47,368)( 48,352)( 49,351)
( 50,350)( 51,349)( 52,348)( 53,362)( 54,361)( 55,360)( 56,359)( 57,358)
( 58,357)( 59,356)( 60,355)( 61,354)( 62,353)( 63,337)( 64,336)( 65,335)
( 66,334)( 67,333)( 68,347)( 69,346)( 70,345)( 71,344)( 72,343)( 73,342)
( 74,341)( 75,340)( 76,339)( 77,338)( 78,243)( 79,247)( 80,246)( 81,245)
( 82,244)( 83,253)( 84,257)( 85,256)( 86,255)( 87,254)( 88,248)( 89,252)
( 90,251)( 91,250)( 92,249)( 93,228)( 94,232)( 95,231)( 96,230)( 97,229)
( 98,238)( 99,242)(100,241)(101,240)(102,239)(103,233)(104,237)(105,236)
(106,235)(107,234)(108,292)(109,291)(110,290)(111,289)(112,288)(113,302)
(114,301)(115,300)(116,299)(117,298)(118,297)(119,296)(120,295)(121,294)
(122,293)(123,277)(124,276)(125,275)(126,274)(127,273)(128,287)(129,286)
(130,285)(131,284)(132,283)(133,282)(134,281)(135,280)(136,279)(137,278)
(138,262)(139,261)(140,260)(141,259)(142,258)(143,272)(144,271)(145,270)
(146,269)(147,268)(148,267)(149,266)(150,265)(151,264)(152,263)(153,398)
(154,402)(155,401)(156,400)(157,399)(158,393)(159,397)(160,396)(161,395)
(162,394)(163,403)(164,407)(165,406)(166,405)(167,404)(168,383)(169,387)
(170,386)(171,385)(172,384)(173,378)(174,382)(175,381)(176,380)(177,379)
(178,388)(179,392)(180,391)(181,390)(182,389)(183,447)(184,446)(185,445)
(186,444)(187,443)(188,442)(189,441)(190,440)(191,439)(192,438)(193,452)
(194,451)(195,450)(196,449)(197,448)(198,432)(199,431)(200,430)(201,429)
(202,428)(203,427)(204,426)(205,425)(206,424)(207,423)(208,437)(209,436)
(210,435)(211,434)(212,433)(213,417)(214,416)(215,415)(216,414)(217,413)
(218,412)(219,411)(220,410)(221,409)(222,408)(223,422)(224,421)(225,420)
(226,419)(227,418);
poly := sub<Sym(452)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >; 
 

to this polytope