Polytope of Type {10,3,6}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,3,6}*1800
if this polytope has a name.
Group : SmallGroup(1800,575)
Rank : 4
Schlafli Type : {10,3,6}
Number of vertices, edges, etc : 50, 75, 45, 6
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   3-fold quotients : {10,3,2}*600
   25-fold quotients : {2,3,6}*72
   75-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)(13,19)
(14,18)(15,17)(27,30)(28,29)(31,46)(32,50)(33,49)(34,48)(35,47)(36,41)(37,45)
(38,44)(39,43)(40,42)(52,55)(53,54)(56,71)(57,75)(58,74)(59,73)(60,72)(61,66)
(62,70)(63,69)(64,68)(65,67);;
s1 := ( 1, 2)( 3, 5)( 6, 8)( 9,10)(11,14)(12,13)(16,20)(17,19)(22,25)(23,24)
(26,52)(27,51)(28,55)(29,54)(30,53)(31,58)(32,57)(33,56)(34,60)(35,59)(36,64)
(37,63)(38,62)(39,61)(40,65)(41,70)(42,69)(43,68)(44,67)(45,66)(46,71)(47,75)
(48,74)(49,73)(50,72);;
s2 := ( 1,26)( 2,32)( 3,38)( 4,44)( 5,50)( 6,46)( 7,27)( 8,33)( 9,39)(10,45)
(11,41)(12,47)(13,28)(14,34)(15,40)(16,36)(17,42)(18,48)(19,29)(20,35)(21,31)
(22,37)(23,43)(24,49)(25,30)(52,57)(53,63)(54,69)(55,75)(56,71)(59,64)(60,70)
(61,66)(62,72)(68,73);;
s3 := (26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)(35,60)
(36,61)(37,62)(38,63)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,70)(46,71)
(47,72)(48,73)(49,74)(50,75);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, 
s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(75)!( 2, 5)( 3, 4)( 6,21)( 7,25)( 8,24)( 9,23)(10,22)(11,16)(12,20)
(13,19)(14,18)(15,17)(27,30)(28,29)(31,46)(32,50)(33,49)(34,48)(35,47)(36,41)
(37,45)(38,44)(39,43)(40,42)(52,55)(53,54)(56,71)(57,75)(58,74)(59,73)(60,72)
(61,66)(62,70)(63,69)(64,68)(65,67);
s1 := Sym(75)!( 1, 2)( 3, 5)( 6, 8)( 9,10)(11,14)(12,13)(16,20)(17,19)(22,25)
(23,24)(26,52)(27,51)(28,55)(29,54)(30,53)(31,58)(32,57)(33,56)(34,60)(35,59)
(36,64)(37,63)(38,62)(39,61)(40,65)(41,70)(42,69)(43,68)(44,67)(45,66)(46,71)
(47,75)(48,74)(49,73)(50,72);
s2 := Sym(75)!( 1,26)( 2,32)( 3,38)( 4,44)( 5,50)( 6,46)( 7,27)( 8,33)( 9,39)
(10,45)(11,41)(12,47)(13,28)(14,34)(15,40)(16,36)(17,42)(18,48)(19,29)(20,35)
(21,31)(22,37)(23,43)(24,49)(25,30)(52,57)(53,63)(54,69)(55,75)(56,71)(59,64)
(60,70)(61,66)(62,72)(68,73);
s3 := Sym(75)!(26,51)(27,52)(28,53)(29,54)(30,55)(31,56)(32,57)(33,58)(34,59)
(35,60)(36,61)(37,62)(38,63)(39,64)(40,65)(41,66)(42,67)(43,68)(44,69)(45,70)
(46,71)(47,72)(48,73)(49,74)(50,75);
poly := sub<Sym(75)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s2*s3*s1*s2*s3*s2, 
s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1*s0*s2*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >; 
 
References : None.
to this polytope