include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,3,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,3,30}*1800
if this polytope has a name.
Group : SmallGroup(1800,586)
Rank : 4
Schlafli Type : {2,3,30}
Number of vertices, edges, etc : 2, 15, 225, 150
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,3,10}*600
25-fold quotients : {2,3,6}*72
75-fold quotients : {2,3,2}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,10)( 5,17)( 6,19)( 7,26)( 8,20)( 9,27)(12,13)(15,21)(16,23)(18,24)
(28,53)(29,60)(30,67)(31,69)(32,76)(33,70)(34,77)(35,54)(36,61)(37,63)(38,62)
(39,64)(40,71)(41,73)(42,55)(43,74)(44,56)(45,58)(46,65)(47,72)(48,66)(49,68)
(50,75)(51,57)(52,59);;
s2 := ( 3,28)( 4,32)( 5,31)( 6,30)( 7,29)( 8,36)( 9,35)(10,34)(11,33)(12,37)
(13,39)(14,38)(15,42)(16,41)(17,40)(18,47)(19,46)(20,45)(21,44)(22,43)(23,50)
(24,49)(25,48)(26,52)(27,51)(54,57)(55,56)(58,61)(59,60)(63,64)(65,67)(68,72)
(69,71)(73,75)(76,77);;
s3 := ( 3,14)( 4,13)( 5,17)( 6,16)( 7,15)( 8, 9)(10,12)(18,24)(19,23)(20,27)
(21,26)(22,25)(28,64)(29,63)(30,67)(31,66)(32,65)(33,59)(34,58)(35,62)(36,61)
(37,60)(38,54)(39,53)(40,57)(41,56)(42,55)(43,74)(44,73)(45,77)(46,76)(47,75)
(48,69)(49,68)(50,72)(51,71)(52,70);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(77)!(1,2);
s1 := Sym(77)!( 4,10)( 5,17)( 6,19)( 7,26)( 8,20)( 9,27)(12,13)(15,21)(16,23)
(18,24)(28,53)(29,60)(30,67)(31,69)(32,76)(33,70)(34,77)(35,54)(36,61)(37,63)
(38,62)(39,64)(40,71)(41,73)(42,55)(43,74)(44,56)(45,58)(46,65)(47,72)(48,66)
(49,68)(50,75)(51,57)(52,59);
s2 := Sym(77)!( 3,28)( 4,32)( 5,31)( 6,30)( 7,29)( 8,36)( 9,35)(10,34)(11,33)
(12,37)(13,39)(14,38)(15,42)(16,41)(17,40)(18,47)(19,46)(20,45)(21,44)(22,43)
(23,50)(24,49)(25,48)(26,52)(27,51)(54,57)(55,56)(58,61)(59,60)(63,64)(65,67)
(68,72)(69,71)(73,75)(76,77);
s3 := Sym(77)!( 3,14)( 4,13)( 5,17)( 6,16)( 7,15)( 8, 9)(10,12)(18,24)(19,23)
(20,27)(21,26)(22,25)(28,64)(29,63)(30,67)(31,66)(32,65)(33,59)(34,58)(35,62)
(36,61)(37,60)(38,54)(39,53)(40,57)(41,56)(42,55)(43,74)(44,73)(45,77)(46,76)
(47,75)(48,69)(49,68)(50,72)(51,71)(52,70);
poly := sub<Sym(77)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s1*s2*s1*s2*s1*s2, s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2*s3*s1*s2,
s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s1*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2 >;
to this polytope