include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,6,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,6,3}*1800
if this polytope has a name.
Group : SmallGroup(1800,586)
Rank : 4
Schlafli Type : {2,6,3}
Number of vertices, edges, etc : 2, 150, 225, 75
Order of s0s1s2s3 : 30
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,6,3}*600
25-fold quotients : {2,6,3}*72
75-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4,26)( 5,19)( 6,17)( 7,10)( 8,16)(11,25)(12,18)(13,24)(14,22)(20,23)
(29,51)(30,44)(31,42)(32,35)(33,41)(36,50)(37,43)(38,49)(39,47)(45,48)(54,76)
(55,69)(56,67)(57,60)(58,66)(61,75)(62,68)(63,74)(64,72)(70,73);;
s2 := ( 4, 7)( 5, 6)( 8,11)( 9,10)(13,14)(15,17)(18,22)(19,21)(23,25)(26,27)
(28,53)(29,57)(30,56)(31,55)(32,54)(33,61)(34,60)(35,59)(36,58)(37,62)(38,64)
(39,63)(40,67)(41,66)(42,65)(43,72)(44,71)(45,70)(46,69)(47,68)(48,75)(49,74)
(50,73)(51,77)(52,76);;
s3 := ( 3,34)( 4,41)( 5,43)( 6,50)( 7,32)( 8,51)( 9,28)(10,35)(11,42)(12,44)
(13,38)(14,45)(15,52)(16,29)(17,36)(18,30)(19,37)(20,39)(21,46)(22,48)(23,47)
(24,49)(25,31)(26,33)(27,40)(53,59)(54,66)(55,68)(56,75)(58,76)(61,67)(62,69)
(64,70)(65,77)(72,73);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(77)!(1,2);
s1 := Sym(77)!( 4,26)( 5,19)( 6,17)( 7,10)( 8,16)(11,25)(12,18)(13,24)(14,22)
(20,23)(29,51)(30,44)(31,42)(32,35)(33,41)(36,50)(37,43)(38,49)(39,47)(45,48)
(54,76)(55,69)(56,67)(57,60)(58,66)(61,75)(62,68)(63,74)(64,72)(70,73);
s2 := Sym(77)!( 4, 7)( 5, 6)( 8,11)( 9,10)(13,14)(15,17)(18,22)(19,21)(23,25)
(26,27)(28,53)(29,57)(30,56)(31,55)(32,54)(33,61)(34,60)(35,59)(36,58)(37,62)
(38,64)(39,63)(40,67)(41,66)(42,65)(43,72)(44,71)(45,70)(46,69)(47,68)(48,75)
(49,74)(50,73)(51,77)(52,76);
s3 := Sym(77)!( 3,34)( 4,41)( 5,43)( 6,50)( 7,32)( 8,51)( 9,28)(10,35)(11,42)
(12,44)(13,38)(14,45)(15,52)(16,29)(17,36)(18,30)(19,37)(20,39)(21,46)(22,48)
(23,47)(24,49)(25,31)(26,33)(27,40)(53,59)(54,66)(55,68)(56,75)(58,76)(61,67)
(62,69)(64,70)(65,77)(72,73);
poly := sub<Sym(77)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2*s3*s1*s2*s1*s2 >;
to this polytope