include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,30,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,30,3}*1800
if this polytope has a name.
Group : SmallGroup(1800,586)
Rank : 4
Schlafli Type : {2,30,3}
Number of vertices, edges, etc : 2, 150, 225, 15
Order of s0s1s2s3 : 6
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {2,10,3}*600
25-fold quotients : {2,6,3}*72
75-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)(15,21)
(16,20)(17,19)(28,53)(29,57)(30,56)(31,55)(32,54)(33,73)(34,77)(35,76)(36,75)
(37,74)(38,68)(39,72)(40,71)(41,70)(42,69)(43,63)(44,67)(45,66)(46,65)(47,64)
(48,58)(49,62)(50,61)(51,60)(52,59);;
s2 := ( 3,29)( 4,28)( 5,32)( 6,31)( 7,30)( 8,37)( 9,36)(10,35)(11,34)(12,33)
(13,40)(14,39)(15,38)(16,42)(17,41)(18,43)(19,47)(20,46)(21,45)(22,44)(23,51)
(24,50)(25,49)(26,48)(27,52)(53,54)(55,57)(58,62)(59,61)(63,65)(66,67)(69,72)
(70,71)(73,76)(74,75);;
s3 := ( 4,10)( 5,17)( 6,19)( 7,26)( 8,20)( 9,27)(12,13)(15,21)(16,23)(18,24)
(28,53)(29,60)(30,67)(31,69)(32,76)(33,70)(34,77)(35,54)(36,61)(37,63)(38,62)
(39,64)(40,71)(41,73)(42,55)(43,74)(44,56)(45,58)(46,65)(47,72)(48,66)(49,68)
(50,75)(51,57)(52,59);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(77)!(1,2);
s1 := Sym(77)!( 4, 7)( 5, 6)( 8,23)( 9,27)(10,26)(11,25)(12,24)(13,18)(14,22)
(15,21)(16,20)(17,19)(28,53)(29,57)(30,56)(31,55)(32,54)(33,73)(34,77)(35,76)
(36,75)(37,74)(38,68)(39,72)(40,71)(41,70)(42,69)(43,63)(44,67)(45,66)(46,65)
(47,64)(48,58)(49,62)(50,61)(51,60)(52,59);
s2 := Sym(77)!( 3,29)( 4,28)( 5,32)( 6,31)( 7,30)( 8,37)( 9,36)(10,35)(11,34)
(12,33)(13,40)(14,39)(15,38)(16,42)(17,41)(18,43)(19,47)(20,46)(21,45)(22,44)
(23,51)(24,50)(25,49)(26,48)(27,52)(53,54)(55,57)(58,62)(59,61)(63,65)(66,67)
(69,72)(70,71)(73,76)(74,75);
s3 := Sym(77)!( 4,10)( 5,17)( 6,19)( 7,26)( 8,20)( 9,27)(12,13)(15,21)(16,23)
(18,24)(28,53)(29,60)(30,67)(31,69)(32,76)(33,70)(34,77)(35,54)(36,61)(37,63)
(38,62)(39,64)(40,71)(41,73)(42,55)(43,74)(44,56)(45,58)(46,65)(47,72)(48,66)
(49,68)(50,75)(51,57)(52,59);
poly := sub<Sym(77)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s1*s0*s1, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3*s2*s3, s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2*s1*s3*s2,
s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s3*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope