include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {38,4,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {38,4,3}*1824
Also Known As : {{38,4|2},{4,3}}. if this polytope has another name.
Group : SmallGroup(1824,1245)
Rank : 4
Schlafli Type : {38,4,3}
Number of vertices, edges, etc : 38, 152, 12, 6
Order of s0s1s2s3 : 114
Order of s0s1s2s3s2s1 : 2
Special Properties :
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
4-fold quotients : {38,2,3}*456
8-fold quotients : {19,2,3}*228
19-fold quotients : {2,4,3}*96
38-fold quotients : {2,4,3}*48
76-fold quotients : {2,2,3}*24
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 5, 73)( 6, 74)( 7, 75)( 8, 76)( 9, 69)( 10, 70)( 11, 71)( 12, 72)
( 13, 65)( 14, 66)( 15, 67)( 16, 68)( 17, 61)( 18, 62)( 19, 63)( 20, 64)
( 21, 57)( 22, 58)( 23, 59)( 24, 60)( 25, 53)( 26, 54)( 27, 55)( 28, 56)
( 29, 49)( 30, 50)( 31, 51)( 32, 52)( 33, 45)( 34, 46)( 35, 47)( 36, 48)
( 37, 41)( 38, 42)( 39, 43)( 40, 44)( 81,149)( 82,150)( 83,151)( 84,152)
( 85,145)( 86,146)( 87,147)( 88,148)( 89,141)( 90,142)( 91,143)( 92,144)
( 93,137)( 94,138)( 95,139)( 96,140)( 97,133)( 98,134)( 99,135)(100,136)
(101,129)(102,130)(103,131)(104,132)(105,125)(106,126)(107,127)(108,128)
(109,121)(110,122)(111,123)(112,124)(113,117)(114,118)(115,119)(116,120)
(157,225)(158,226)(159,227)(160,228)(161,221)(162,222)(163,223)(164,224)
(165,217)(166,218)(167,219)(168,220)(169,213)(170,214)(171,215)(172,216)
(173,209)(174,210)(175,211)(176,212)(177,205)(178,206)(179,207)(180,208)
(181,201)(182,202)(183,203)(184,204)(185,197)(186,198)(187,199)(188,200)
(189,193)(190,194)(191,195)(192,196)(233,301)(234,302)(235,303)(236,304)
(237,297)(238,298)(239,299)(240,300)(241,293)(242,294)(243,295)(244,296)
(245,289)(246,290)(247,291)(248,292)(249,285)(250,286)(251,287)(252,288)
(253,281)(254,282)(255,283)(256,284)(257,277)(258,278)(259,279)(260,280)
(261,273)(262,274)(263,275)(264,276)(265,269)(266,270)(267,271)(268,272)
(309,377)(310,378)(311,379)(312,380)(313,373)(314,374)(315,375)(316,376)
(317,369)(318,370)(319,371)(320,372)(321,365)(322,366)(323,367)(324,368)
(325,361)(326,362)(327,363)(328,364)(329,357)(330,358)(331,359)(332,360)
(333,353)(334,354)(335,355)(336,356)(337,349)(338,350)(339,351)(340,352)
(341,345)(342,346)(343,347)(344,348)(385,453)(386,454)(387,455)(388,456)
(389,449)(390,450)(391,451)(392,452)(393,445)(394,446)(395,447)(396,448)
(397,441)(398,442)(399,443)(400,444)(401,437)(402,438)(403,439)(404,440)
(405,433)(406,434)(407,435)(408,436)(409,429)(410,430)(411,431)(412,432)
(413,425)(414,426)(415,427)(416,428)(417,421)(418,422)(419,423)(420,424);;
s1 := ( 1,235)( 2,236)( 3,233)( 4,234)( 5,231)( 6,232)( 7,229)( 8,230)
( 9,303)( 10,304)( 11,301)( 12,302)( 13,299)( 14,300)( 15,297)( 16,298)
( 17,295)( 18,296)( 19,293)( 20,294)( 21,291)( 22,292)( 23,289)( 24,290)
( 25,287)( 26,288)( 27,285)( 28,286)( 29,283)( 30,284)( 31,281)( 32,282)
( 33,279)( 34,280)( 35,277)( 36,278)( 37,275)( 38,276)( 39,273)( 40,274)
( 41,271)( 42,272)( 43,269)( 44,270)( 45,267)( 46,268)( 47,265)( 48,266)
( 49,263)( 50,264)( 51,261)( 52,262)( 53,259)( 54,260)( 55,257)( 56,258)
( 57,255)( 58,256)( 59,253)( 60,254)( 61,251)( 62,252)( 63,249)( 64,250)
( 65,247)( 66,248)( 67,245)( 68,246)( 69,243)( 70,244)( 71,241)( 72,242)
( 73,239)( 74,240)( 75,237)( 76,238)( 77,311)( 78,312)( 79,309)( 80,310)
( 81,307)( 82,308)( 83,305)( 84,306)( 85,379)( 86,380)( 87,377)( 88,378)
( 89,375)( 90,376)( 91,373)( 92,374)( 93,371)( 94,372)( 95,369)( 96,370)
( 97,367)( 98,368)( 99,365)(100,366)(101,363)(102,364)(103,361)(104,362)
(105,359)(106,360)(107,357)(108,358)(109,355)(110,356)(111,353)(112,354)
(113,351)(114,352)(115,349)(116,350)(117,347)(118,348)(119,345)(120,346)
(121,343)(122,344)(123,341)(124,342)(125,339)(126,340)(127,337)(128,338)
(129,335)(130,336)(131,333)(132,334)(133,331)(134,332)(135,329)(136,330)
(137,327)(138,328)(139,325)(140,326)(141,323)(142,324)(143,321)(144,322)
(145,319)(146,320)(147,317)(148,318)(149,315)(150,316)(151,313)(152,314)
(153,387)(154,388)(155,385)(156,386)(157,383)(158,384)(159,381)(160,382)
(161,455)(162,456)(163,453)(164,454)(165,451)(166,452)(167,449)(168,450)
(169,447)(170,448)(171,445)(172,446)(173,443)(174,444)(175,441)(176,442)
(177,439)(178,440)(179,437)(180,438)(181,435)(182,436)(183,433)(184,434)
(185,431)(186,432)(187,429)(188,430)(189,427)(190,428)(191,425)(192,426)
(193,423)(194,424)(195,421)(196,422)(197,419)(198,420)(199,417)(200,418)
(201,415)(202,416)(203,413)(204,414)(205,411)(206,412)(207,409)(208,410)
(209,407)(210,408)(211,405)(212,406)(213,403)(214,404)(215,401)(216,402)
(217,399)(218,400)(219,397)(220,398)(221,395)(222,396)(223,393)(224,394)
(225,391)(226,392)(227,389)(228,390);;
s2 := ( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)( 31, 32)
( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)( 63, 64)
( 67, 68)( 71, 72)( 75, 76)( 77,153)( 78,154)( 79,156)( 80,155)( 81,157)
( 82,158)( 83,160)( 84,159)( 85,161)( 86,162)( 87,164)( 88,163)( 89,165)
( 90,166)( 91,168)( 92,167)( 93,169)( 94,170)( 95,172)( 96,171)( 97,173)
( 98,174)( 99,176)(100,175)(101,177)(102,178)(103,180)(104,179)(105,181)
(106,182)(107,184)(108,183)(109,185)(110,186)(111,188)(112,187)(113,189)
(114,190)(115,192)(116,191)(117,193)(118,194)(119,196)(120,195)(121,197)
(122,198)(123,200)(124,199)(125,201)(126,202)(127,204)(128,203)(129,205)
(130,206)(131,208)(132,207)(133,209)(134,210)(135,212)(136,211)(137,213)
(138,214)(139,216)(140,215)(141,217)(142,218)(143,220)(144,219)(145,221)
(146,222)(147,224)(148,223)(149,225)(150,226)(151,228)(152,227)(231,232)
(235,236)(239,240)(243,244)(247,248)(251,252)(255,256)(259,260)(263,264)
(267,268)(271,272)(275,276)(279,280)(283,284)(287,288)(291,292)(295,296)
(299,300)(303,304)(305,381)(306,382)(307,384)(308,383)(309,385)(310,386)
(311,388)(312,387)(313,389)(314,390)(315,392)(316,391)(317,393)(318,394)
(319,396)(320,395)(321,397)(322,398)(323,400)(324,399)(325,401)(326,402)
(327,404)(328,403)(329,405)(330,406)(331,408)(332,407)(333,409)(334,410)
(335,412)(336,411)(337,413)(338,414)(339,416)(340,415)(341,417)(342,418)
(343,420)(344,419)(345,421)(346,422)(347,424)(348,423)(349,425)(350,426)
(351,428)(352,427)(353,429)(354,430)(355,432)(356,431)(357,433)(358,434)
(359,436)(360,435)(361,437)(362,438)(363,440)(364,439)(365,441)(366,442)
(367,444)(368,443)(369,445)(370,446)(371,448)(372,447)(373,449)(374,450)
(375,452)(376,451)(377,453)(378,454)(379,456)(380,455);;
s3 := ( 1, 77)( 2, 80)( 3, 79)( 4, 78)( 5, 81)( 6, 84)( 7, 83)( 8, 82)
( 9, 85)( 10, 88)( 11, 87)( 12, 86)( 13, 89)( 14, 92)( 15, 91)( 16, 90)
( 17, 93)( 18, 96)( 19, 95)( 20, 94)( 21, 97)( 22,100)( 23, 99)( 24, 98)
( 25,101)( 26,104)( 27,103)( 28,102)( 29,105)( 30,108)( 31,107)( 32,106)
( 33,109)( 34,112)( 35,111)( 36,110)( 37,113)( 38,116)( 39,115)( 40,114)
( 41,117)( 42,120)( 43,119)( 44,118)( 45,121)( 46,124)( 47,123)( 48,122)
( 49,125)( 50,128)( 51,127)( 52,126)( 53,129)( 54,132)( 55,131)( 56,130)
( 57,133)( 58,136)( 59,135)( 60,134)( 61,137)( 62,140)( 63,139)( 64,138)
( 65,141)( 66,144)( 67,143)( 68,142)( 69,145)( 70,148)( 71,147)( 72,146)
( 73,149)( 74,152)( 75,151)( 76,150)(154,156)(158,160)(162,164)(166,168)
(170,172)(174,176)(178,180)(182,184)(186,188)(190,192)(194,196)(198,200)
(202,204)(206,208)(210,212)(214,216)(218,220)(222,224)(226,228)(229,305)
(230,308)(231,307)(232,306)(233,309)(234,312)(235,311)(236,310)(237,313)
(238,316)(239,315)(240,314)(241,317)(242,320)(243,319)(244,318)(245,321)
(246,324)(247,323)(248,322)(249,325)(250,328)(251,327)(252,326)(253,329)
(254,332)(255,331)(256,330)(257,333)(258,336)(259,335)(260,334)(261,337)
(262,340)(263,339)(264,338)(265,341)(266,344)(267,343)(268,342)(269,345)
(270,348)(271,347)(272,346)(273,349)(274,352)(275,351)(276,350)(277,353)
(278,356)(279,355)(280,354)(281,357)(282,360)(283,359)(284,358)(285,361)
(286,364)(287,363)(288,362)(289,365)(290,368)(291,367)(292,366)(293,369)
(294,372)(295,371)(296,370)(297,373)(298,376)(299,375)(300,374)(301,377)
(302,380)(303,379)(304,378)(382,384)(386,388)(390,392)(394,396)(398,400)
(402,404)(406,408)(410,412)(414,416)(418,420)(422,424)(426,428)(430,432)
(434,436)(438,440)(442,444)(446,448)(450,452)(454,456);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(456)!( 5, 73)( 6, 74)( 7, 75)( 8, 76)( 9, 69)( 10, 70)( 11, 71)
( 12, 72)( 13, 65)( 14, 66)( 15, 67)( 16, 68)( 17, 61)( 18, 62)( 19, 63)
( 20, 64)( 21, 57)( 22, 58)( 23, 59)( 24, 60)( 25, 53)( 26, 54)( 27, 55)
( 28, 56)( 29, 49)( 30, 50)( 31, 51)( 32, 52)( 33, 45)( 34, 46)( 35, 47)
( 36, 48)( 37, 41)( 38, 42)( 39, 43)( 40, 44)( 81,149)( 82,150)( 83,151)
( 84,152)( 85,145)( 86,146)( 87,147)( 88,148)( 89,141)( 90,142)( 91,143)
( 92,144)( 93,137)( 94,138)( 95,139)( 96,140)( 97,133)( 98,134)( 99,135)
(100,136)(101,129)(102,130)(103,131)(104,132)(105,125)(106,126)(107,127)
(108,128)(109,121)(110,122)(111,123)(112,124)(113,117)(114,118)(115,119)
(116,120)(157,225)(158,226)(159,227)(160,228)(161,221)(162,222)(163,223)
(164,224)(165,217)(166,218)(167,219)(168,220)(169,213)(170,214)(171,215)
(172,216)(173,209)(174,210)(175,211)(176,212)(177,205)(178,206)(179,207)
(180,208)(181,201)(182,202)(183,203)(184,204)(185,197)(186,198)(187,199)
(188,200)(189,193)(190,194)(191,195)(192,196)(233,301)(234,302)(235,303)
(236,304)(237,297)(238,298)(239,299)(240,300)(241,293)(242,294)(243,295)
(244,296)(245,289)(246,290)(247,291)(248,292)(249,285)(250,286)(251,287)
(252,288)(253,281)(254,282)(255,283)(256,284)(257,277)(258,278)(259,279)
(260,280)(261,273)(262,274)(263,275)(264,276)(265,269)(266,270)(267,271)
(268,272)(309,377)(310,378)(311,379)(312,380)(313,373)(314,374)(315,375)
(316,376)(317,369)(318,370)(319,371)(320,372)(321,365)(322,366)(323,367)
(324,368)(325,361)(326,362)(327,363)(328,364)(329,357)(330,358)(331,359)
(332,360)(333,353)(334,354)(335,355)(336,356)(337,349)(338,350)(339,351)
(340,352)(341,345)(342,346)(343,347)(344,348)(385,453)(386,454)(387,455)
(388,456)(389,449)(390,450)(391,451)(392,452)(393,445)(394,446)(395,447)
(396,448)(397,441)(398,442)(399,443)(400,444)(401,437)(402,438)(403,439)
(404,440)(405,433)(406,434)(407,435)(408,436)(409,429)(410,430)(411,431)
(412,432)(413,425)(414,426)(415,427)(416,428)(417,421)(418,422)(419,423)
(420,424);
s1 := Sym(456)!( 1,235)( 2,236)( 3,233)( 4,234)( 5,231)( 6,232)( 7,229)
( 8,230)( 9,303)( 10,304)( 11,301)( 12,302)( 13,299)( 14,300)( 15,297)
( 16,298)( 17,295)( 18,296)( 19,293)( 20,294)( 21,291)( 22,292)( 23,289)
( 24,290)( 25,287)( 26,288)( 27,285)( 28,286)( 29,283)( 30,284)( 31,281)
( 32,282)( 33,279)( 34,280)( 35,277)( 36,278)( 37,275)( 38,276)( 39,273)
( 40,274)( 41,271)( 42,272)( 43,269)( 44,270)( 45,267)( 46,268)( 47,265)
( 48,266)( 49,263)( 50,264)( 51,261)( 52,262)( 53,259)( 54,260)( 55,257)
( 56,258)( 57,255)( 58,256)( 59,253)( 60,254)( 61,251)( 62,252)( 63,249)
( 64,250)( 65,247)( 66,248)( 67,245)( 68,246)( 69,243)( 70,244)( 71,241)
( 72,242)( 73,239)( 74,240)( 75,237)( 76,238)( 77,311)( 78,312)( 79,309)
( 80,310)( 81,307)( 82,308)( 83,305)( 84,306)( 85,379)( 86,380)( 87,377)
( 88,378)( 89,375)( 90,376)( 91,373)( 92,374)( 93,371)( 94,372)( 95,369)
( 96,370)( 97,367)( 98,368)( 99,365)(100,366)(101,363)(102,364)(103,361)
(104,362)(105,359)(106,360)(107,357)(108,358)(109,355)(110,356)(111,353)
(112,354)(113,351)(114,352)(115,349)(116,350)(117,347)(118,348)(119,345)
(120,346)(121,343)(122,344)(123,341)(124,342)(125,339)(126,340)(127,337)
(128,338)(129,335)(130,336)(131,333)(132,334)(133,331)(134,332)(135,329)
(136,330)(137,327)(138,328)(139,325)(140,326)(141,323)(142,324)(143,321)
(144,322)(145,319)(146,320)(147,317)(148,318)(149,315)(150,316)(151,313)
(152,314)(153,387)(154,388)(155,385)(156,386)(157,383)(158,384)(159,381)
(160,382)(161,455)(162,456)(163,453)(164,454)(165,451)(166,452)(167,449)
(168,450)(169,447)(170,448)(171,445)(172,446)(173,443)(174,444)(175,441)
(176,442)(177,439)(178,440)(179,437)(180,438)(181,435)(182,436)(183,433)
(184,434)(185,431)(186,432)(187,429)(188,430)(189,427)(190,428)(191,425)
(192,426)(193,423)(194,424)(195,421)(196,422)(197,419)(198,420)(199,417)
(200,418)(201,415)(202,416)(203,413)(204,414)(205,411)(206,412)(207,409)
(208,410)(209,407)(210,408)(211,405)(212,406)(213,403)(214,404)(215,401)
(216,402)(217,399)(218,400)(219,397)(220,398)(221,395)(222,396)(223,393)
(224,394)(225,391)(226,392)(227,389)(228,390);
s2 := Sym(456)!( 3, 4)( 7, 8)( 11, 12)( 15, 16)( 19, 20)( 23, 24)( 27, 28)
( 31, 32)( 35, 36)( 39, 40)( 43, 44)( 47, 48)( 51, 52)( 55, 56)( 59, 60)
( 63, 64)( 67, 68)( 71, 72)( 75, 76)( 77,153)( 78,154)( 79,156)( 80,155)
( 81,157)( 82,158)( 83,160)( 84,159)( 85,161)( 86,162)( 87,164)( 88,163)
( 89,165)( 90,166)( 91,168)( 92,167)( 93,169)( 94,170)( 95,172)( 96,171)
( 97,173)( 98,174)( 99,176)(100,175)(101,177)(102,178)(103,180)(104,179)
(105,181)(106,182)(107,184)(108,183)(109,185)(110,186)(111,188)(112,187)
(113,189)(114,190)(115,192)(116,191)(117,193)(118,194)(119,196)(120,195)
(121,197)(122,198)(123,200)(124,199)(125,201)(126,202)(127,204)(128,203)
(129,205)(130,206)(131,208)(132,207)(133,209)(134,210)(135,212)(136,211)
(137,213)(138,214)(139,216)(140,215)(141,217)(142,218)(143,220)(144,219)
(145,221)(146,222)(147,224)(148,223)(149,225)(150,226)(151,228)(152,227)
(231,232)(235,236)(239,240)(243,244)(247,248)(251,252)(255,256)(259,260)
(263,264)(267,268)(271,272)(275,276)(279,280)(283,284)(287,288)(291,292)
(295,296)(299,300)(303,304)(305,381)(306,382)(307,384)(308,383)(309,385)
(310,386)(311,388)(312,387)(313,389)(314,390)(315,392)(316,391)(317,393)
(318,394)(319,396)(320,395)(321,397)(322,398)(323,400)(324,399)(325,401)
(326,402)(327,404)(328,403)(329,405)(330,406)(331,408)(332,407)(333,409)
(334,410)(335,412)(336,411)(337,413)(338,414)(339,416)(340,415)(341,417)
(342,418)(343,420)(344,419)(345,421)(346,422)(347,424)(348,423)(349,425)
(350,426)(351,428)(352,427)(353,429)(354,430)(355,432)(356,431)(357,433)
(358,434)(359,436)(360,435)(361,437)(362,438)(363,440)(364,439)(365,441)
(366,442)(367,444)(368,443)(369,445)(370,446)(371,448)(372,447)(373,449)
(374,450)(375,452)(376,451)(377,453)(378,454)(379,456)(380,455);
s3 := Sym(456)!( 1, 77)( 2, 80)( 3, 79)( 4, 78)( 5, 81)( 6, 84)( 7, 83)
( 8, 82)( 9, 85)( 10, 88)( 11, 87)( 12, 86)( 13, 89)( 14, 92)( 15, 91)
( 16, 90)( 17, 93)( 18, 96)( 19, 95)( 20, 94)( 21, 97)( 22,100)( 23, 99)
( 24, 98)( 25,101)( 26,104)( 27,103)( 28,102)( 29,105)( 30,108)( 31,107)
( 32,106)( 33,109)( 34,112)( 35,111)( 36,110)( 37,113)( 38,116)( 39,115)
( 40,114)( 41,117)( 42,120)( 43,119)( 44,118)( 45,121)( 46,124)( 47,123)
( 48,122)( 49,125)( 50,128)( 51,127)( 52,126)( 53,129)( 54,132)( 55,131)
( 56,130)( 57,133)( 58,136)( 59,135)( 60,134)( 61,137)( 62,140)( 63,139)
( 64,138)( 65,141)( 66,144)( 67,143)( 68,142)( 69,145)( 70,148)( 71,147)
( 72,146)( 73,149)( 74,152)( 75,151)( 76,150)(154,156)(158,160)(162,164)
(166,168)(170,172)(174,176)(178,180)(182,184)(186,188)(190,192)(194,196)
(198,200)(202,204)(206,208)(210,212)(214,216)(218,220)(222,224)(226,228)
(229,305)(230,308)(231,307)(232,306)(233,309)(234,312)(235,311)(236,310)
(237,313)(238,316)(239,315)(240,314)(241,317)(242,320)(243,319)(244,318)
(245,321)(246,324)(247,323)(248,322)(249,325)(250,328)(251,327)(252,326)
(253,329)(254,332)(255,331)(256,330)(257,333)(258,336)(259,335)(260,334)
(261,337)(262,340)(263,339)(264,338)(265,341)(266,344)(267,343)(268,342)
(269,345)(270,348)(271,347)(272,346)(273,349)(274,352)(275,351)(276,350)
(277,353)(278,356)(279,355)(280,354)(281,357)(282,360)(283,359)(284,358)
(285,361)(286,364)(287,363)(288,362)(289,365)(290,368)(291,367)(292,366)
(293,369)(294,372)(295,371)(296,370)(297,373)(298,376)(299,375)(300,374)
(301,377)(302,380)(303,379)(304,378)(382,384)(386,388)(390,392)(394,396)
(398,400)(402,404)(406,408)(410,412)(414,416)(418,420)(422,424)(426,428)
(430,432)(434,436)(438,440)(442,444)(446,448)(450,452)(454,456);
poly := sub<Sym(456)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope