include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,4,57,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,57,2}*1824
if this polytope has a name.
Group : SmallGroup(1824,1247)
Rank : 5
Schlafli Type : {2,4,57,2}
Number of vertices, edges, etc : 2, 4, 114, 57, 2
Order of s0s1s2s3s4 : 114
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Non-Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
19-fold quotients : {2,4,3,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,17)(16,18)(19,21)(20,22)
(23,25)(24,26)(27,29)(28,30)(31,33)(32,34)(35,37)(36,38)(39,41)(40,42)(43,45)
(44,46)(47,49)(48,50)(51,53)(52,54)(55,57)(56,58)(59,61)(60,62)(63,65)(64,66)
(67,69)(68,70)(71,73)(72,74)(75,77)(76,78);;
s2 := ( 4, 5)( 7,75)( 8,77)( 9,76)(10,78)(11,71)(12,73)(13,72)(14,74)(15,67)
(16,69)(17,68)(18,70)(19,63)(20,65)(21,64)(22,66)(23,59)(24,61)(25,60)(26,62)
(27,55)(28,57)(29,56)(30,58)(31,51)(32,53)(33,52)(34,54)(35,47)(36,49)(37,48)
(38,50)(39,43)(40,45)(41,44)(42,46);;
s3 := ( 3, 7)( 4,10)( 5, 9)( 6, 8)(11,75)(12,78)(13,77)(14,76)(15,71)(16,74)
(17,73)(18,72)(19,67)(20,70)(21,69)(22,68)(23,63)(24,66)(25,65)(26,64)(27,59)
(28,62)(29,61)(30,60)(31,55)(32,58)(33,57)(34,56)(35,51)(36,54)(37,53)(38,52)
(39,47)(40,50)(41,49)(42,48)(44,46);;
s4 := (79,80);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2,
s1*s2*s3*s2*s1*s2*s3*s1*s2, s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(80)!(1,2);
s1 := Sym(80)!( 3, 5)( 4, 6)( 7, 9)( 8,10)(11,13)(12,14)(15,17)(16,18)(19,21)
(20,22)(23,25)(24,26)(27,29)(28,30)(31,33)(32,34)(35,37)(36,38)(39,41)(40,42)
(43,45)(44,46)(47,49)(48,50)(51,53)(52,54)(55,57)(56,58)(59,61)(60,62)(63,65)
(64,66)(67,69)(68,70)(71,73)(72,74)(75,77)(76,78);
s2 := Sym(80)!( 4, 5)( 7,75)( 8,77)( 9,76)(10,78)(11,71)(12,73)(13,72)(14,74)
(15,67)(16,69)(17,68)(18,70)(19,63)(20,65)(21,64)(22,66)(23,59)(24,61)(25,60)
(26,62)(27,55)(28,57)(29,56)(30,58)(31,51)(32,53)(33,52)(34,54)(35,47)(36,49)
(37,48)(38,50)(39,43)(40,45)(41,44)(42,46);
s3 := Sym(80)!( 3, 7)( 4,10)( 5, 9)( 6, 8)(11,75)(12,78)(13,77)(14,76)(15,71)
(16,74)(17,73)(18,72)(19,67)(20,70)(21,69)(22,68)(23,63)(24,66)(25,65)(26,64)
(27,59)(28,62)(29,61)(30,60)(31,55)(32,58)(33,57)(34,56)(35,51)(36,54)(37,53)
(38,52)(39,47)(40,50)(41,49)(42,48)(44,46);
s4 := Sym(80)!(79,80);
poly := sub<Sym(80)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s3*s4*s3*s4,
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s1*s2,
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >;
to this polytope