include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {230,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {230,4}*1840
Also Known As : {230,4|2}. if this polytope has another name.
Group : SmallGroup(1840,160)
Rank : 3
Schlafli Type : {230,4}
Number of vertices, edges, etc : 230, 460, 4
Order of s0s1s2 : 460
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {230,2}*920
4-fold quotients : {115,2}*460
5-fold quotients : {46,4}*368
10-fold quotients : {46,2}*184
20-fold quotients : {23,2}*92
23-fold quotients : {10,4}*80
46-fold quotients : {10,2}*40
92-fold quotients : {5,2}*20
115-fold quotients : {2,4}*16
230-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)( 9, 16)
( 10, 15)( 11, 14)( 12, 13)( 24, 93)( 25,115)( 26,114)( 27,113)( 28,112)
( 29,111)( 30,110)( 31,109)( 32,108)( 33,107)( 34,106)( 35,105)( 36,104)
( 37,103)( 38,102)( 39,101)( 40,100)( 41, 99)( 42, 98)( 43, 97)( 44, 96)
( 45, 95)( 46, 94)( 47, 70)( 48, 92)( 49, 91)( 50, 90)( 51, 89)( 52, 88)
( 53, 87)( 54, 86)( 55, 85)( 56, 84)( 57, 83)( 58, 82)( 59, 81)( 60, 80)
( 61, 79)( 62, 78)( 63, 77)( 64, 76)( 65, 75)( 66, 74)( 67, 73)( 68, 72)
( 69, 71)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)(123,132)
(124,131)(125,130)(126,129)(127,128)(139,208)(140,230)(141,229)(142,228)
(143,227)(144,226)(145,225)(146,224)(147,223)(148,222)(149,221)(150,220)
(151,219)(152,218)(153,217)(154,216)(155,215)(156,214)(157,213)(158,212)
(159,211)(160,210)(161,209)(162,185)(163,207)(164,206)(165,205)(166,204)
(167,203)(168,202)(169,201)(170,200)(171,199)(172,198)(173,197)(174,196)
(175,195)(176,194)(177,193)(178,192)(179,191)(180,190)(181,189)(182,188)
(183,187)(184,186)(232,253)(233,252)(234,251)(235,250)(236,249)(237,248)
(238,247)(239,246)(240,245)(241,244)(242,243)(254,323)(255,345)(256,344)
(257,343)(258,342)(259,341)(260,340)(261,339)(262,338)(263,337)(264,336)
(265,335)(266,334)(267,333)(268,332)(269,331)(270,330)(271,329)(272,328)
(273,327)(274,326)(275,325)(276,324)(277,300)(278,322)(279,321)(280,320)
(281,319)(282,318)(283,317)(284,316)(285,315)(286,314)(287,313)(288,312)
(289,311)(290,310)(291,309)(292,308)(293,307)(294,306)(295,305)(296,304)
(297,303)(298,302)(299,301)(347,368)(348,367)(349,366)(350,365)(351,364)
(352,363)(353,362)(354,361)(355,360)(356,359)(357,358)(369,438)(370,460)
(371,459)(372,458)(373,457)(374,456)(375,455)(376,454)(377,453)(378,452)
(379,451)(380,450)(381,449)(382,448)(383,447)(384,446)(385,445)(386,444)
(387,443)(388,442)(389,441)(390,440)(391,439)(392,415)(393,437)(394,436)
(395,435)(396,434)(397,433)(398,432)(399,431)(400,430)(401,429)(402,428)
(403,427)(404,426)(405,425)(406,424)(407,423)(408,422)(409,421)(410,420)
(411,419)(412,418)(413,417)(414,416);;
s1 := ( 1, 25)( 2, 24)( 3, 46)( 4, 45)( 5, 44)( 6, 43)( 7, 42)( 8, 41)
( 9, 40)( 10, 39)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)( 16, 33)
( 17, 32)( 18, 31)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)( 47, 94)
( 48, 93)( 49,115)( 50,114)( 51,113)( 52,112)( 53,111)( 54,110)( 55,109)
( 56,108)( 57,107)( 58,106)( 59,105)( 60,104)( 61,103)( 62,102)( 63,101)
( 64,100)( 65, 99)( 66, 98)( 67, 97)( 68, 96)( 69, 95)( 70, 71)( 72, 92)
( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)( 78, 86)( 79, 85)( 80, 84)
( 81, 83)(116,140)(117,139)(118,161)(119,160)(120,159)(121,158)(122,157)
(123,156)(124,155)(125,154)(126,153)(127,152)(128,151)(129,150)(130,149)
(131,148)(132,147)(133,146)(134,145)(135,144)(136,143)(137,142)(138,141)
(162,209)(163,208)(164,230)(165,229)(166,228)(167,227)(168,226)(169,225)
(170,224)(171,223)(172,222)(173,221)(174,220)(175,219)(176,218)(177,217)
(178,216)(179,215)(180,214)(181,213)(182,212)(183,211)(184,210)(185,186)
(187,207)(188,206)(189,205)(190,204)(191,203)(192,202)(193,201)(194,200)
(195,199)(196,198)(231,370)(232,369)(233,391)(234,390)(235,389)(236,388)
(237,387)(238,386)(239,385)(240,384)(241,383)(242,382)(243,381)(244,380)
(245,379)(246,378)(247,377)(248,376)(249,375)(250,374)(251,373)(252,372)
(253,371)(254,347)(255,346)(256,368)(257,367)(258,366)(259,365)(260,364)
(261,363)(262,362)(263,361)(264,360)(265,359)(266,358)(267,357)(268,356)
(269,355)(270,354)(271,353)(272,352)(273,351)(274,350)(275,349)(276,348)
(277,439)(278,438)(279,460)(280,459)(281,458)(282,457)(283,456)(284,455)
(285,454)(286,453)(287,452)(288,451)(289,450)(290,449)(291,448)(292,447)
(293,446)(294,445)(295,444)(296,443)(297,442)(298,441)(299,440)(300,416)
(301,415)(302,437)(303,436)(304,435)(305,434)(306,433)(307,432)(308,431)
(309,430)(310,429)(311,428)(312,427)(313,426)(314,425)(315,424)(316,423)
(317,422)(318,421)(319,420)(320,419)(321,418)(322,417)(323,393)(324,392)
(325,414)(326,413)(327,412)(328,411)(329,410)(330,409)(331,408)(332,407)
(333,406)(334,405)(335,404)(336,403)(337,402)(338,401)(339,400)(340,399)
(341,398)(342,397)(343,396)(344,395)(345,394);;
s2 := ( 1,231)( 2,232)( 3,233)( 4,234)( 5,235)( 6,236)( 7,237)( 8,238)
( 9,239)( 10,240)( 11,241)( 12,242)( 13,243)( 14,244)( 15,245)( 16,246)
( 17,247)( 18,248)( 19,249)( 20,250)( 21,251)( 22,252)( 23,253)( 24,254)
( 25,255)( 26,256)( 27,257)( 28,258)( 29,259)( 30,260)( 31,261)( 32,262)
( 33,263)( 34,264)( 35,265)( 36,266)( 37,267)( 38,268)( 39,269)( 40,270)
( 41,271)( 42,272)( 43,273)( 44,274)( 45,275)( 46,276)( 47,277)( 48,278)
( 49,279)( 50,280)( 51,281)( 52,282)( 53,283)( 54,284)( 55,285)( 56,286)
( 57,287)( 58,288)( 59,289)( 60,290)( 61,291)( 62,292)( 63,293)( 64,294)
( 65,295)( 66,296)( 67,297)( 68,298)( 69,299)( 70,300)( 71,301)( 72,302)
( 73,303)( 74,304)( 75,305)( 76,306)( 77,307)( 78,308)( 79,309)( 80,310)
( 81,311)( 82,312)( 83,313)( 84,314)( 85,315)( 86,316)( 87,317)( 88,318)
( 89,319)( 90,320)( 91,321)( 92,322)( 93,323)( 94,324)( 95,325)( 96,326)
( 97,327)( 98,328)( 99,329)(100,330)(101,331)(102,332)(103,333)(104,334)
(105,335)(106,336)(107,337)(108,338)(109,339)(110,340)(111,341)(112,342)
(113,343)(114,344)(115,345)(116,346)(117,347)(118,348)(119,349)(120,350)
(121,351)(122,352)(123,353)(124,354)(125,355)(126,356)(127,357)(128,358)
(129,359)(130,360)(131,361)(132,362)(133,363)(134,364)(135,365)(136,366)
(137,367)(138,368)(139,369)(140,370)(141,371)(142,372)(143,373)(144,374)
(145,375)(146,376)(147,377)(148,378)(149,379)(150,380)(151,381)(152,382)
(153,383)(154,384)(155,385)(156,386)(157,387)(158,388)(159,389)(160,390)
(161,391)(162,392)(163,393)(164,394)(165,395)(166,396)(167,397)(168,398)
(169,399)(170,400)(171,401)(172,402)(173,403)(174,404)(175,405)(176,406)
(177,407)(178,408)(179,409)(180,410)(181,411)(182,412)(183,413)(184,414)
(185,415)(186,416)(187,417)(188,418)(189,419)(190,420)(191,421)(192,422)
(193,423)(194,424)(195,425)(196,426)(197,427)(198,428)(199,429)(200,430)
(201,431)(202,432)(203,433)(204,434)(205,435)(206,436)(207,437)(208,438)
(209,439)(210,440)(211,441)(212,442)(213,443)(214,444)(215,445)(216,446)
(217,447)(218,448)(219,449)(220,450)(221,451)(222,452)(223,453)(224,454)
(225,455)(226,456)(227,457)(228,458)(229,459)(230,460);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(460)!( 2, 23)( 3, 22)( 4, 21)( 5, 20)( 6, 19)( 7, 18)( 8, 17)
( 9, 16)( 10, 15)( 11, 14)( 12, 13)( 24, 93)( 25,115)( 26,114)( 27,113)
( 28,112)( 29,111)( 30,110)( 31,109)( 32,108)( 33,107)( 34,106)( 35,105)
( 36,104)( 37,103)( 38,102)( 39,101)( 40,100)( 41, 99)( 42, 98)( 43, 97)
( 44, 96)( 45, 95)( 46, 94)( 47, 70)( 48, 92)( 49, 91)( 50, 90)( 51, 89)
( 52, 88)( 53, 87)( 54, 86)( 55, 85)( 56, 84)( 57, 83)( 58, 82)( 59, 81)
( 60, 80)( 61, 79)( 62, 78)( 63, 77)( 64, 76)( 65, 75)( 66, 74)( 67, 73)
( 68, 72)( 69, 71)(117,138)(118,137)(119,136)(120,135)(121,134)(122,133)
(123,132)(124,131)(125,130)(126,129)(127,128)(139,208)(140,230)(141,229)
(142,228)(143,227)(144,226)(145,225)(146,224)(147,223)(148,222)(149,221)
(150,220)(151,219)(152,218)(153,217)(154,216)(155,215)(156,214)(157,213)
(158,212)(159,211)(160,210)(161,209)(162,185)(163,207)(164,206)(165,205)
(166,204)(167,203)(168,202)(169,201)(170,200)(171,199)(172,198)(173,197)
(174,196)(175,195)(176,194)(177,193)(178,192)(179,191)(180,190)(181,189)
(182,188)(183,187)(184,186)(232,253)(233,252)(234,251)(235,250)(236,249)
(237,248)(238,247)(239,246)(240,245)(241,244)(242,243)(254,323)(255,345)
(256,344)(257,343)(258,342)(259,341)(260,340)(261,339)(262,338)(263,337)
(264,336)(265,335)(266,334)(267,333)(268,332)(269,331)(270,330)(271,329)
(272,328)(273,327)(274,326)(275,325)(276,324)(277,300)(278,322)(279,321)
(280,320)(281,319)(282,318)(283,317)(284,316)(285,315)(286,314)(287,313)
(288,312)(289,311)(290,310)(291,309)(292,308)(293,307)(294,306)(295,305)
(296,304)(297,303)(298,302)(299,301)(347,368)(348,367)(349,366)(350,365)
(351,364)(352,363)(353,362)(354,361)(355,360)(356,359)(357,358)(369,438)
(370,460)(371,459)(372,458)(373,457)(374,456)(375,455)(376,454)(377,453)
(378,452)(379,451)(380,450)(381,449)(382,448)(383,447)(384,446)(385,445)
(386,444)(387,443)(388,442)(389,441)(390,440)(391,439)(392,415)(393,437)
(394,436)(395,435)(396,434)(397,433)(398,432)(399,431)(400,430)(401,429)
(402,428)(403,427)(404,426)(405,425)(406,424)(407,423)(408,422)(409,421)
(410,420)(411,419)(412,418)(413,417)(414,416);
s1 := Sym(460)!( 1, 25)( 2, 24)( 3, 46)( 4, 45)( 5, 44)( 6, 43)( 7, 42)
( 8, 41)( 9, 40)( 10, 39)( 11, 38)( 12, 37)( 13, 36)( 14, 35)( 15, 34)
( 16, 33)( 17, 32)( 18, 31)( 19, 30)( 20, 29)( 21, 28)( 22, 27)( 23, 26)
( 47, 94)( 48, 93)( 49,115)( 50,114)( 51,113)( 52,112)( 53,111)( 54,110)
( 55,109)( 56,108)( 57,107)( 58,106)( 59,105)( 60,104)( 61,103)( 62,102)
( 63,101)( 64,100)( 65, 99)( 66, 98)( 67, 97)( 68, 96)( 69, 95)( 70, 71)
( 72, 92)( 73, 91)( 74, 90)( 75, 89)( 76, 88)( 77, 87)( 78, 86)( 79, 85)
( 80, 84)( 81, 83)(116,140)(117,139)(118,161)(119,160)(120,159)(121,158)
(122,157)(123,156)(124,155)(125,154)(126,153)(127,152)(128,151)(129,150)
(130,149)(131,148)(132,147)(133,146)(134,145)(135,144)(136,143)(137,142)
(138,141)(162,209)(163,208)(164,230)(165,229)(166,228)(167,227)(168,226)
(169,225)(170,224)(171,223)(172,222)(173,221)(174,220)(175,219)(176,218)
(177,217)(178,216)(179,215)(180,214)(181,213)(182,212)(183,211)(184,210)
(185,186)(187,207)(188,206)(189,205)(190,204)(191,203)(192,202)(193,201)
(194,200)(195,199)(196,198)(231,370)(232,369)(233,391)(234,390)(235,389)
(236,388)(237,387)(238,386)(239,385)(240,384)(241,383)(242,382)(243,381)
(244,380)(245,379)(246,378)(247,377)(248,376)(249,375)(250,374)(251,373)
(252,372)(253,371)(254,347)(255,346)(256,368)(257,367)(258,366)(259,365)
(260,364)(261,363)(262,362)(263,361)(264,360)(265,359)(266,358)(267,357)
(268,356)(269,355)(270,354)(271,353)(272,352)(273,351)(274,350)(275,349)
(276,348)(277,439)(278,438)(279,460)(280,459)(281,458)(282,457)(283,456)
(284,455)(285,454)(286,453)(287,452)(288,451)(289,450)(290,449)(291,448)
(292,447)(293,446)(294,445)(295,444)(296,443)(297,442)(298,441)(299,440)
(300,416)(301,415)(302,437)(303,436)(304,435)(305,434)(306,433)(307,432)
(308,431)(309,430)(310,429)(311,428)(312,427)(313,426)(314,425)(315,424)
(316,423)(317,422)(318,421)(319,420)(320,419)(321,418)(322,417)(323,393)
(324,392)(325,414)(326,413)(327,412)(328,411)(329,410)(330,409)(331,408)
(332,407)(333,406)(334,405)(335,404)(336,403)(337,402)(338,401)(339,400)
(340,399)(341,398)(342,397)(343,396)(344,395)(345,394);
s2 := Sym(460)!( 1,231)( 2,232)( 3,233)( 4,234)( 5,235)( 6,236)( 7,237)
( 8,238)( 9,239)( 10,240)( 11,241)( 12,242)( 13,243)( 14,244)( 15,245)
( 16,246)( 17,247)( 18,248)( 19,249)( 20,250)( 21,251)( 22,252)( 23,253)
( 24,254)( 25,255)( 26,256)( 27,257)( 28,258)( 29,259)( 30,260)( 31,261)
( 32,262)( 33,263)( 34,264)( 35,265)( 36,266)( 37,267)( 38,268)( 39,269)
( 40,270)( 41,271)( 42,272)( 43,273)( 44,274)( 45,275)( 46,276)( 47,277)
( 48,278)( 49,279)( 50,280)( 51,281)( 52,282)( 53,283)( 54,284)( 55,285)
( 56,286)( 57,287)( 58,288)( 59,289)( 60,290)( 61,291)( 62,292)( 63,293)
( 64,294)( 65,295)( 66,296)( 67,297)( 68,298)( 69,299)( 70,300)( 71,301)
( 72,302)( 73,303)( 74,304)( 75,305)( 76,306)( 77,307)( 78,308)( 79,309)
( 80,310)( 81,311)( 82,312)( 83,313)( 84,314)( 85,315)( 86,316)( 87,317)
( 88,318)( 89,319)( 90,320)( 91,321)( 92,322)( 93,323)( 94,324)( 95,325)
( 96,326)( 97,327)( 98,328)( 99,329)(100,330)(101,331)(102,332)(103,333)
(104,334)(105,335)(106,336)(107,337)(108,338)(109,339)(110,340)(111,341)
(112,342)(113,343)(114,344)(115,345)(116,346)(117,347)(118,348)(119,349)
(120,350)(121,351)(122,352)(123,353)(124,354)(125,355)(126,356)(127,357)
(128,358)(129,359)(130,360)(131,361)(132,362)(133,363)(134,364)(135,365)
(136,366)(137,367)(138,368)(139,369)(140,370)(141,371)(142,372)(143,373)
(144,374)(145,375)(146,376)(147,377)(148,378)(149,379)(150,380)(151,381)
(152,382)(153,383)(154,384)(155,385)(156,386)(157,387)(158,388)(159,389)
(160,390)(161,391)(162,392)(163,393)(164,394)(165,395)(166,396)(167,397)
(168,398)(169,399)(170,400)(171,401)(172,402)(173,403)(174,404)(175,405)
(176,406)(177,407)(178,408)(179,409)(180,410)(181,411)(182,412)(183,413)
(184,414)(185,415)(186,416)(187,417)(188,418)(189,419)(190,420)(191,421)
(192,422)(193,423)(194,424)(195,425)(196,426)(197,427)(198,428)(199,429)
(200,430)(201,431)(202,432)(203,433)(204,434)(205,435)(206,436)(207,437)
(208,438)(209,439)(210,440)(211,441)(212,442)(213,443)(214,444)(215,445)
(216,446)(217,447)(218,448)(219,449)(220,450)(221,451)(222,452)(223,453)
(224,454)(225,455)(226,456)(227,457)(228,458)(229,459)(230,460);
poly := sub<Sym(460)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope