include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,5,2,46}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,5,2,46}*1840
if this polytope has a name.
Group : SmallGroup(1840,174)
Rank : 5
Schlafli Type : {2,5,2,46}
Number of vertices, edges, etc : 2, 5, 5, 46, 46
Order of s0s1s2s3s4 : 230
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,5,2,23}*920
23-fold quotients : {2,5,2,2}*80
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7);;
s2 := (3,4)(5,6);;
s3 := (10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)
(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47)(48,49)(50,51)
(52,53);;
s4 := ( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)(23,28)(25,26)
(27,32)(29,30)(31,36)(33,34)(35,40)(37,38)(39,44)(41,42)(43,48)(45,46)(47,52)
(49,50)(51,53);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(53)!(1,2);
s1 := Sym(53)!(4,5)(6,7);
s2 := Sym(53)!(3,4)(5,6);
s3 := Sym(53)!(10,11)(12,13)(14,15)(16,17)(18,19)(20,21)(22,23)(24,25)(26,27)
(28,29)(30,31)(32,33)(34,35)(36,37)(38,39)(40,41)(42,43)(44,45)(46,47)(48,49)
(50,51)(52,53);
s4 := Sym(53)!( 8,12)( 9,10)(11,16)(13,14)(15,20)(17,18)(19,24)(21,22)(23,28)
(25,26)(27,32)(29,30)(31,36)(33,34)(35,40)(37,38)(39,44)(41,42)(43,48)(45,46)
(47,52)(49,50)(51,53);
poly := sub<Sym(53)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope