include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,462}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,462}*1848
if this polytope has a name.
Group : SmallGroup(1848,161)
Rank : 3
Schlafli Type : {2,462}
Number of vertices, edges, etc : 2, 462, 462
Order of s0s1s2 : 462
Order of s0s1s2s1 : 2
Special Properties :
Degenerate
Universal
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,231}*924
3-fold quotients : {2,154}*616
6-fold quotients : {2,77}*308
7-fold quotients : {2,66}*264
11-fold quotients : {2,42}*168
14-fold quotients : {2,33}*132
21-fold quotients : {2,22}*88
22-fold quotients : {2,21}*84
33-fold quotients : {2,14}*56
42-fold quotients : {2,11}*44
66-fold quotients : {2,7}*28
77-fold quotients : {2,6}*24
154-fold quotients : {2,3}*12
231-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 8, 9)( 14, 69)( 15, 79)( 16, 78)
( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 72)( 23, 71)( 24, 70)
( 25, 58)( 26, 68)( 27, 67)( 28, 66)( 29, 65)( 30, 64)( 31, 63)( 32, 62)
( 33, 61)( 34, 60)( 35, 59)( 36, 47)( 37, 57)( 38, 56)( 39, 55)( 40, 54)
( 41, 53)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)( 80,157)( 81,167)
( 82,166)( 83,165)( 84,164)( 85,163)( 86,162)( 87,161)( 88,160)( 89,159)
( 90,158)( 91,223)( 92,233)( 93,232)( 94,231)( 95,230)( 96,229)( 97,228)
( 98,227)( 99,226)(100,225)(101,224)(102,212)(103,222)(104,221)(105,220)
(106,219)(107,218)(108,217)(109,216)(110,215)(111,214)(112,213)(113,201)
(114,211)(115,210)(116,209)(117,208)(118,207)(119,206)(120,205)(121,204)
(122,203)(123,202)(124,190)(125,200)(126,199)(127,198)(128,197)(129,196)
(130,195)(131,194)(132,193)(133,192)(134,191)(135,179)(136,189)(137,188)
(138,187)(139,186)(140,185)(141,184)(142,183)(143,182)(144,181)(145,180)
(146,168)(147,178)(148,177)(149,176)(150,175)(151,174)(152,173)(153,172)
(154,171)(155,170)(156,169)(235,244)(236,243)(237,242)(238,241)(239,240)
(245,300)(246,310)(247,309)(248,308)(249,307)(250,306)(251,305)(252,304)
(253,303)(254,302)(255,301)(256,289)(257,299)(258,298)(259,297)(260,296)
(261,295)(262,294)(263,293)(264,292)(265,291)(266,290)(267,278)(268,288)
(269,287)(270,286)(271,285)(272,284)(273,283)(274,282)(275,281)(276,280)
(277,279)(311,388)(312,398)(313,397)(314,396)(315,395)(316,394)(317,393)
(318,392)(319,391)(320,390)(321,389)(322,454)(323,464)(324,463)(325,462)
(326,461)(327,460)(328,459)(329,458)(330,457)(331,456)(332,455)(333,443)
(334,453)(335,452)(336,451)(337,450)(338,449)(339,448)(340,447)(341,446)
(342,445)(343,444)(344,432)(345,442)(346,441)(347,440)(348,439)(349,438)
(350,437)(351,436)(352,435)(353,434)(354,433)(355,421)(356,431)(357,430)
(358,429)(359,428)(360,427)(361,426)(362,425)(363,424)(364,423)(365,422)
(366,410)(367,420)(368,419)(369,418)(370,417)(371,416)(372,415)(373,414)
(374,413)(375,412)(376,411)(377,399)(378,409)(379,408)(380,407)(381,406)
(382,405)(383,404)(384,403)(385,402)(386,401)(387,400);;
s2 := ( 3,323)( 4,322)( 5,332)( 6,331)( 7,330)( 8,329)( 9,328)( 10,327)
( 11,326)( 12,325)( 13,324)( 14,312)( 15,311)( 16,321)( 17,320)( 18,319)
( 19,318)( 20,317)( 21,316)( 22,315)( 23,314)( 24,313)( 25,378)( 26,377)
( 27,387)( 28,386)( 29,385)( 30,384)( 31,383)( 32,382)( 33,381)( 34,380)
( 35,379)( 36,367)( 37,366)( 38,376)( 39,375)( 40,374)( 41,373)( 42,372)
( 43,371)( 44,370)( 45,369)( 46,368)( 47,356)( 48,355)( 49,365)( 50,364)
( 51,363)( 52,362)( 53,361)( 54,360)( 55,359)( 56,358)( 57,357)( 58,345)
( 59,344)( 60,354)( 61,353)( 62,352)( 63,351)( 64,350)( 65,349)( 66,348)
( 67,347)( 68,346)( 69,334)( 70,333)( 71,343)( 72,342)( 73,341)( 74,340)
( 75,339)( 76,338)( 77,337)( 78,336)( 79,335)( 80,246)( 81,245)( 82,255)
( 83,254)( 84,253)( 85,252)( 86,251)( 87,250)( 88,249)( 89,248)( 90,247)
( 91,235)( 92,234)( 93,244)( 94,243)( 95,242)( 96,241)( 97,240)( 98,239)
( 99,238)(100,237)(101,236)(102,301)(103,300)(104,310)(105,309)(106,308)
(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)(113,290)(114,289)
(115,299)(116,298)(117,297)(118,296)(119,295)(120,294)(121,293)(122,292)
(123,291)(124,279)(125,278)(126,288)(127,287)(128,286)(129,285)(130,284)
(131,283)(132,282)(133,281)(134,280)(135,268)(136,267)(137,277)(138,276)
(139,275)(140,274)(141,273)(142,272)(143,271)(144,270)(145,269)(146,257)
(147,256)(148,266)(149,265)(150,264)(151,263)(152,262)(153,261)(154,260)
(155,259)(156,258)(157,400)(158,399)(159,409)(160,408)(161,407)(162,406)
(163,405)(164,404)(165,403)(166,402)(167,401)(168,389)(169,388)(170,398)
(171,397)(172,396)(173,395)(174,394)(175,393)(176,392)(177,391)(178,390)
(179,455)(180,454)(181,464)(182,463)(183,462)(184,461)(185,460)(186,459)
(187,458)(188,457)(189,456)(190,444)(191,443)(192,453)(193,452)(194,451)
(195,450)(196,449)(197,448)(198,447)(199,446)(200,445)(201,433)(202,432)
(203,442)(204,441)(205,440)(206,439)(207,438)(208,437)(209,436)(210,435)
(211,434)(212,422)(213,421)(214,431)(215,430)(216,429)(217,428)(218,427)
(219,426)(220,425)(221,424)(222,423)(223,411)(224,410)(225,420)(226,419)
(227,418)(228,417)(229,416)(230,415)(231,414)(232,413)(233,412);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(464)!(1,2);
s1 := Sym(464)!( 4, 13)( 5, 12)( 6, 11)( 7, 10)( 8, 9)( 14, 69)( 15, 79)
( 16, 78)( 17, 77)( 18, 76)( 19, 75)( 20, 74)( 21, 73)( 22, 72)( 23, 71)
( 24, 70)( 25, 58)( 26, 68)( 27, 67)( 28, 66)( 29, 65)( 30, 64)( 31, 63)
( 32, 62)( 33, 61)( 34, 60)( 35, 59)( 36, 47)( 37, 57)( 38, 56)( 39, 55)
( 40, 54)( 41, 53)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)( 80,157)
( 81,167)( 82,166)( 83,165)( 84,164)( 85,163)( 86,162)( 87,161)( 88,160)
( 89,159)( 90,158)( 91,223)( 92,233)( 93,232)( 94,231)( 95,230)( 96,229)
( 97,228)( 98,227)( 99,226)(100,225)(101,224)(102,212)(103,222)(104,221)
(105,220)(106,219)(107,218)(108,217)(109,216)(110,215)(111,214)(112,213)
(113,201)(114,211)(115,210)(116,209)(117,208)(118,207)(119,206)(120,205)
(121,204)(122,203)(123,202)(124,190)(125,200)(126,199)(127,198)(128,197)
(129,196)(130,195)(131,194)(132,193)(133,192)(134,191)(135,179)(136,189)
(137,188)(138,187)(139,186)(140,185)(141,184)(142,183)(143,182)(144,181)
(145,180)(146,168)(147,178)(148,177)(149,176)(150,175)(151,174)(152,173)
(153,172)(154,171)(155,170)(156,169)(235,244)(236,243)(237,242)(238,241)
(239,240)(245,300)(246,310)(247,309)(248,308)(249,307)(250,306)(251,305)
(252,304)(253,303)(254,302)(255,301)(256,289)(257,299)(258,298)(259,297)
(260,296)(261,295)(262,294)(263,293)(264,292)(265,291)(266,290)(267,278)
(268,288)(269,287)(270,286)(271,285)(272,284)(273,283)(274,282)(275,281)
(276,280)(277,279)(311,388)(312,398)(313,397)(314,396)(315,395)(316,394)
(317,393)(318,392)(319,391)(320,390)(321,389)(322,454)(323,464)(324,463)
(325,462)(326,461)(327,460)(328,459)(329,458)(330,457)(331,456)(332,455)
(333,443)(334,453)(335,452)(336,451)(337,450)(338,449)(339,448)(340,447)
(341,446)(342,445)(343,444)(344,432)(345,442)(346,441)(347,440)(348,439)
(349,438)(350,437)(351,436)(352,435)(353,434)(354,433)(355,421)(356,431)
(357,430)(358,429)(359,428)(360,427)(361,426)(362,425)(363,424)(364,423)
(365,422)(366,410)(367,420)(368,419)(369,418)(370,417)(371,416)(372,415)
(373,414)(374,413)(375,412)(376,411)(377,399)(378,409)(379,408)(380,407)
(381,406)(382,405)(383,404)(384,403)(385,402)(386,401)(387,400);
s2 := Sym(464)!( 3,323)( 4,322)( 5,332)( 6,331)( 7,330)( 8,329)( 9,328)
( 10,327)( 11,326)( 12,325)( 13,324)( 14,312)( 15,311)( 16,321)( 17,320)
( 18,319)( 19,318)( 20,317)( 21,316)( 22,315)( 23,314)( 24,313)( 25,378)
( 26,377)( 27,387)( 28,386)( 29,385)( 30,384)( 31,383)( 32,382)( 33,381)
( 34,380)( 35,379)( 36,367)( 37,366)( 38,376)( 39,375)( 40,374)( 41,373)
( 42,372)( 43,371)( 44,370)( 45,369)( 46,368)( 47,356)( 48,355)( 49,365)
( 50,364)( 51,363)( 52,362)( 53,361)( 54,360)( 55,359)( 56,358)( 57,357)
( 58,345)( 59,344)( 60,354)( 61,353)( 62,352)( 63,351)( 64,350)( 65,349)
( 66,348)( 67,347)( 68,346)( 69,334)( 70,333)( 71,343)( 72,342)( 73,341)
( 74,340)( 75,339)( 76,338)( 77,337)( 78,336)( 79,335)( 80,246)( 81,245)
( 82,255)( 83,254)( 84,253)( 85,252)( 86,251)( 87,250)( 88,249)( 89,248)
( 90,247)( 91,235)( 92,234)( 93,244)( 94,243)( 95,242)( 96,241)( 97,240)
( 98,239)( 99,238)(100,237)(101,236)(102,301)(103,300)(104,310)(105,309)
(106,308)(107,307)(108,306)(109,305)(110,304)(111,303)(112,302)(113,290)
(114,289)(115,299)(116,298)(117,297)(118,296)(119,295)(120,294)(121,293)
(122,292)(123,291)(124,279)(125,278)(126,288)(127,287)(128,286)(129,285)
(130,284)(131,283)(132,282)(133,281)(134,280)(135,268)(136,267)(137,277)
(138,276)(139,275)(140,274)(141,273)(142,272)(143,271)(144,270)(145,269)
(146,257)(147,256)(148,266)(149,265)(150,264)(151,263)(152,262)(153,261)
(154,260)(155,259)(156,258)(157,400)(158,399)(159,409)(160,408)(161,407)
(162,406)(163,405)(164,404)(165,403)(166,402)(167,401)(168,389)(169,388)
(170,398)(171,397)(172,396)(173,395)(174,394)(175,393)(176,392)(177,391)
(178,390)(179,455)(180,454)(181,464)(182,463)(183,462)(184,461)(185,460)
(186,459)(187,458)(188,457)(189,456)(190,444)(191,443)(192,453)(193,452)
(194,451)(195,450)(196,449)(197,448)(198,447)(199,446)(200,445)(201,433)
(202,432)(203,442)(204,441)(205,440)(206,439)(207,438)(208,437)(209,436)
(210,435)(211,434)(212,422)(213,421)(214,431)(215,430)(216,429)(217,428)
(218,427)(219,426)(220,425)(221,424)(222,423)(223,411)(224,410)(225,420)
(226,419)(227,418)(228,417)(229,416)(230,415)(231,414)(232,413)(233,412);
poly := sub<Sym(464)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope