Polytope of Type {6,4,26}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,4,26}*1872
if this polytope has a name.
Group : SmallGroup(1872,1023)
Rank : 4
Schlafli Type : {6,4,26}
Number of vertices, edges, etc : 9, 18, 78, 26
Order of s0s1s2s3 : 52
Order of s0s1s2s3s2s1 : 2
Special Properties :
   Universal
   Non-Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   13-fold quotients : {6,4,2}*144
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 14, 27)( 15, 28)( 16, 29)( 17, 30)( 18, 31)( 19, 32)( 20, 33)( 21, 34)
( 22, 35)( 23, 36)( 24, 37)( 25, 38)( 26, 39)( 40, 79)( 41, 80)( 42, 81)
( 43, 82)( 44, 83)( 45, 84)( 46, 85)( 47, 86)( 48, 87)( 49, 88)( 50, 89)
( 51, 90)( 52, 91)( 53,105)( 54,106)( 55,107)( 56,108)( 57,109)( 58,110)
( 59,111)( 60,112)( 61,113)( 62,114)( 63,115)( 64,116)( 65,117)( 66, 92)
( 67, 93)( 68, 94)( 69, 95)( 70, 96)( 71, 97)( 72, 98)( 73, 99)( 74,100)
( 75,101)( 76,102)( 77,103)( 78,104);;
s1 := ( 1,40)( 2,41)( 3,42)( 4,43)( 5,44)( 6,45)( 7,46)( 8,47)( 9,48)(10,49)
(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)(21,60)
(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)
(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78);;
s2 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 40)( 15, 52)
( 16, 51)( 17, 50)( 18, 49)( 19, 48)( 20, 47)( 21, 46)( 22, 45)( 23, 44)
( 24, 43)( 25, 42)( 26, 41)( 27, 79)( 28, 91)( 29, 90)( 30, 89)( 31, 88)
( 32, 87)( 33, 86)( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 81)( 39, 80)
( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93)(106,117)(107,116)(108,115)(109,114)(110,113)
(111,112);;
s3 := (  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)( 16, 26)
( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)( 31, 37)
( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)( 46, 48)
( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)( 68, 78)
( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)( 83, 89)
( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)( 98,100)
(105,106)(107,117)(108,116)(109,115)(110,114)(111,113);;
poly := Group([s0,s1,s2,s3]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(117)!( 14, 27)( 15, 28)( 16, 29)( 17, 30)( 18, 31)( 19, 32)( 20, 33)
( 21, 34)( 22, 35)( 23, 36)( 24, 37)( 25, 38)( 26, 39)( 40, 79)( 41, 80)
( 42, 81)( 43, 82)( 44, 83)( 45, 84)( 46, 85)( 47, 86)( 48, 87)( 49, 88)
( 50, 89)( 51, 90)( 52, 91)( 53,105)( 54,106)( 55,107)( 56,108)( 57,109)
( 58,110)( 59,111)( 60,112)( 61,113)( 62,114)( 63,115)( 64,116)( 65,117)
( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)( 71, 97)( 72, 98)( 73, 99)
( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);
s1 := Sym(117)!( 1,40)( 2,41)( 3,42)( 4,43)( 5,44)( 6,45)( 7,46)( 8,47)( 9,48)
(10,49)(11,50)(12,51)(13,52)(14,53)(15,54)(16,55)(17,56)(18,57)(19,58)(20,59)
(21,60)(22,61)(23,62)(24,63)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)
(32,71)(33,72)(34,73)(35,74)(36,75)(37,76)(38,77)(39,78);
s2 := Sym(117)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 40)
( 15, 52)( 16, 51)( 17, 50)( 18, 49)( 19, 48)( 20, 47)( 21, 46)( 22, 45)
( 23, 44)( 24, 43)( 25, 42)( 26, 41)( 27, 79)( 28, 91)( 29, 90)( 30, 89)
( 31, 88)( 32, 87)( 33, 86)( 34, 85)( 35, 84)( 36, 83)( 37, 82)( 38, 81)
( 39, 80)( 54, 65)( 55, 64)( 56, 63)( 57, 62)( 58, 61)( 59, 60)( 66, 92)
( 67,104)( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)
( 75, 96)( 76, 95)( 77, 94)( 78, 93)(106,117)(107,116)(108,115)(109,114)
(110,113)(111,112);
s3 := Sym(117)!(  1,  2)(  3, 13)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 15)
( 16, 26)( 17, 25)( 18, 24)( 19, 23)( 20, 22)( 27, 28)( 29, 39)( 30, 38)
( 31, 37)( 32, 36)( 33, 35)( 40, 41)( 42, 52)( 43, 51)( 44, 50)( 45, 49)
( 46, 48)( 53, 54)( 55, 65)( 56, 64)( 57, 63)( 58, 62)( 59, 61)( 66, 67)
( 68, 78)( 69, 77)( 70, 76)( 71, 75)( 72, 74)( 79, 80)( 81, 91)( 82, 90)
( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)( 96,102)( 97,101)
( 98,100)(105,106)(107,117)(108,116)(109,115)(110,114)(111,113);
poly := sub<Sym(117)|s0,s1,s2,s3>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2, 
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s0*s1*s2*s0*s1*s2*s0*s1*s2*s0*s1, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 
References : None.
to this polytope