Polytope of Type {78,4}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {78,4}*1872
if this polytope has a name.
Group : SmallGroup(1872,1023)
Rank : 3
Schlafli Type : {78,4}
Number of vertices, edges, etc : 234, 468, 12
Order of s0s1s2 : 52
Order of s0s1s2s1 : 6
Special Properties :
   Compact Hyperbolic Quotient
   Locally Spherical
   Orientable
Related Polytopes :
   Facet
   Vertex Figure
   Dual
   Petrial
   Skewing Operation
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   9-fold quotients : {26,4}*208
   13-fold quotients : {6,4}*144
   18-fold quotients : {26,2}*104
   26-fold quotients : {6,4}*72
   36-fold quotients : {13,2}*52
   117-fold quotients : {2,4}*16
   234-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 27)( 15, 39)
( 16, 38)( 17, 37)( 18, 36)( 19, 35)( 20, 34)( 21, 33)( 22, 32)( 23, 31)
( 24, 30)( 25, 29)( 26, 28)( 40, 79)( 41, 91)( 42, 90)( 43, 89)( 44, 88)
( 45, 87)( 46, 86)( 47, 85)( 48, 84)( 49, 83)( 50, 82)( 51, 81)( 52, 80)
( 53,105)( 54,117)( 55,116)( 56,115)( 57,114)( 58,113)( 59,112)( 60,111)
( 61,110)( 62,109)( 63,108)( 64,107)( 65,106)( 66, 92)( 67,104)( 68,103)
( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)( 76, 95)
( 77, 94)( 78, 93);;
s1 := (  1, 41)(  2, 40)(  3, 52)(  4, 51)(  5, 50)(  6, 49)(  7, 48)(  8, 47)
(  9, 46)( 10, 45)( 11, 44)( 12, 43)( 13, 42)( 14, 54)( 15, 53)( 16, 65)
( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)
( 25, 56)( 26, 55)( 27, 67)( 28, 66)( 29, 78)( 30, 77)( 31, 76)( 32, 75)
( 33, 74)( 34, 73)( 35, 72)( 36, 71)( 37, 70)( 38, 69)( 39, 68)( 79, 80)
( 81, 91)( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)( 95,103)
( 96,102)( 97,101)( 98,100)(105,106)(107,117)(108,116)(109,115)(110,114)
(111,113);;
s2 := ( 14, 40)( 15, 41)( 16, 42)( 17, 43)( 18, 44)( 19, 45)( 20, 46)( 21, 47)
( 22, 48)( 23, 49)( 24, 50)( 25, 51)( 26, 52)( 27, 79)( 28, 80)( 29, 81)
( 30, 82)( 31, 83)( 32, 84)( 33, 85)( 34, 86)( 35, 87)( 36, 88)( 37, 89)
( 38, 90)( 39, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)( 71, 97)
( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);;
poly := Group([s0,s1,s2]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(117)!(  2, 13)(  3, 12)(  4, 11)(  5, 10)(  6,  9)(  7,  8)( 14, 27)
( 15, 39)( 16, 38)( 17, 37)( 18, 36)( 19, 35)( 20, 34)( 21, 33)( 22, 32)
( 23, 31)( 24, 30)( 25, 29)( 26, 28)( 40, 79)( 41, 91)( 42, 90)( 43, 89)
( 44, 88)( 45, 87)( 46, 86)( 47, 85)( 48, 84)( 49, 83)( 50, 82)( 51, 81)
( 52, 80)( 53,105)( 54,117)( 55,116)( 56,115)( 57,114)( 58,113)( 59,112)
( 60,111)( 61,110)( 62,109)( 63,108)( 64,107)( 65,106)( 66, 92)( 67,104)
( 68,103)( 69,102)( 70,101)( 71,100)( 72, 99)( 73, 98)( 74, 97)( 75, 96)
( 76, 95)( 77, 94)( 78, 93);
s1 := Sym(117)!(  1, 41)(  2, 40)(  3, 52)(  4, 51)(  5, 50)(  6, 49)(  7, 48)
(  8, 47)(  9, 46)( 10, 45)( 11, 44)( 12, 43)( 13, 42)( 14, 54)( 15, 53)
( 16, 65)( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)
( 24, 57)( 25, 56)( 26, 55)( 27, 67)( 28, 66)( 29, 78)( 30, 77)( 31, 76)
( 32, 75)( 33, 74)( 34, 73)( 35, 72)( 36, 71)( 37, 70)( 38, 69)( 39, 68)
( 79, 80)( 81, 91)( 82, 90)( 83, 89)( 84, 88)( 85, 87)( 92, 93)( 94,104)
( 95,103)( 96,102)( 97,101)( 98,100)(105,106)(107,117)(108,116)(109,115)
(110,114)(111,113);
s2 := Sym(117)!( 14, 40)( 15, 41)( 16, 42)( 17, 43)( 18, 44)( 19, 45)( 20, 46)
( 21, 47)( 22, 48)( 23, 49)( 24, 50)( 25, 51)( 26, 52)( 27, 79)( 28, 80)
( 29, 81)( 30, 82)( 31, 83)( 32, 84)( 33, 85)( 34, 86)( 35, 87)( 36, 88)
( 37, 89)( 38, 90)( 39, 91)( 66, 92)( 67, 93)( 68, 94)( 69, 95)( 70, 96)
( 71, 97)( 72, 98)( 73, 99)( 74,100)( 75,101)( 76,102)( 77,103)( 78,104);
poly := sub<Sym(117)|s0,s1,s2>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2, 
s0*s2*s0*s2, s1*s2*s1*s2*s1*s2*s1*s2, 
s2*s0*s1*s0*s1*s2*s1*s0*s1*s2*s0*s1*s0*s1*s2*s1*s0*s1, 
s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s0*s1*s2*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s2*s0*s1*s0*s1*s0*s1*s2*s0*s1*s2*s0*s1*s0*s1 >; 
 
References : None.
to this polytope