include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {6,78,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {6,78,2}*1872b
if this polytope has a name.
Group : SmallGroup(1872,1084)
Rank : 4
Schlafli Type : {6,78,2}
Number of vertices, edges, etc : 6, 234, 78, 2
Order of s0s1s2s3 : 78
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {6,26,2}*624, {2,78,2}*624
6-fold quotients : {2,39,2}*312
9-fold quotients : {2,26,2}*208
13-fold quotients : {6,6,2}*144a
18-fold quotients : {2,13,2}*104
39-fold quotients : {2,6,2}*48, {6,2,2}*48
78-fold quotients : {2,3,2}*24, {3,2,2}*24
117-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 40, 79)( 41, 80)( 42, 81)( 43, 82)( 44, 83)( 45, 84)( 46, 85)( 47, 86)
( 48, 87)( 49, 88)( 50, 89)( 51, 90)( 52, 91)( 53, 92)( 54, 93)( 55, 94)
( 56, 95)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61,100)( 62,101)( 63,102)
( 64,103)( 65,104)( 66,105)( 67,106)( 68,107)( 69,108)( 70,109)( 71,110)
( 72,111)( 73,112)( 74,113)( 75,114)( 76,115)( 77,116)( 78,117)(157,196)
(158,197)(159,198)(160,199)(161,200)(162,201)(163,202)(164,203)(165,204)
(166,205)(167,206)(168,207)(169,208)(170,209)(171,210)(172,211)(173,212)
(174,213)(175,214)(176,215)(177,216)(178,217)(179,218)(180,219)(181,220)
(182,221)(183,222)(184,223)(185,224)(186,225)(187,226)(188,227)(189,228)
(190,229)(191,230)(192,231)(193,232)(194,233)(195,234);;
s1 := ( 1, 40)( 2, 52)( 3, 51)( 4, 50)( 5, 49)( 6, 48)( 7, 47)( 8, 46)
( 9, 45)( 10, 44)( 11, 43)( 12, 42)( 13, 41)( 14, 66)( 15, 78)( 16, 77)
( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 71)( 23, 70)( 24, 69)
( 25, 68)( 26, 67)( 27, 53)( 28, 65)( 29, 64)( 30, 63)( 31, 62)( 32, 61)
( 33, 60)( 34, 59)( 35, 58)( 36, 57)( 37, 56)( 38, 55)( 39, 54)( 80, 91)
( 81, 90)( 82, 89)( 83, 88)( 84, 87)( 85, 86)( 92,105)( 93,117)( 94,116)
( 95,115)( 96,114)( 97,113)( 98,112)( 99,111)(100,110)(101,109)(102,108)
(103,107)(104,106)(118,157)(119,169)(120,168)(121,167)(122,166)(123,165)
(124,164)(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)(131,183)
(132,195)(133,194)(134,193)(135,192)(136,191)(137,190)(138,189)(139,188)
(140,187)(141,186)(142,185)(143,184)(144,170)(145,182)(146,181)(147,180)
(148,179)(149,178)(150,177)(151,176)(152,175)(153,174)(154,173)(155,172)
(156,171)(197,208)(198,207)(199,206)(200,205)(201,204)(202,203)(209,222)
(210,234)(211,233)(212,232)(213,231)(214,230)(215,229)(216,228)(217,227)
(218,226)(219,225)(220,224)(221,223);;
s2 := ( 1,132)( 2,131)( 3,143)( 4,142)( 5,141)( 6,140)( 7,139)( 8,138)
( 9,137)( 10,136)( 11,135)( 12,134)( 13,133)( 14,119)( 15,118)( 16,130)
( 17,129)( 18,128)( 19,127)( 20,126)( 21,125)( 22,124)( 23,123)( 24,122)
( 25,121)( 26,120)( 27,145)( 28,144)( 29,156)( 30,155)( 31,154)( 32,153)
( 33,152)( 34,151)( 35,150)( 36,149)( 37,148)( 38,147)( 39,146)( 40,171)
( 41,170)( 42,182)( 43,181)( 44,180)( 45,179)( 46,178)( 47,177)( 48,176)
( 49,175)( 50,174)( 51,173)( 52,172)( 53,158)( 54,157)( 55,169)( 56,168)
( 57,167)( 58,166)( 59,165)( 60,164)( 61,163)( 62,162)( 63,161)( 64,160)
( 65,159)( 66,184)( 67,183)( 68,195)( 69,194)( 70,193)( 71,192)( 72,191)
( 73,190)( 74,189)( 75,188)( 76,187)( 77,186)( 78,185)( 79,210)( 80,209)
( 81,221)( 82,220)( 83,219)( 84,218)( 85,217)( 86,216)( 87,215)( 88,214)
( 89,213)( 90,212)( 91,211)( 92,197)( 93,196)( 94,208)( 95,207)( 96,206)
( 97,205)( 98,204)( 99,203)(100,202)(101,201)(102,200)(103,199)(104,198)
(105,223)(106,222)(107,234)(108,233)(109,232)(110,231)(111,230)(112,229)
(113,228)(114,227)(115,226)(116,225)(117,224);;
s3 := (235,236);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s1*s2*s1*s0*s1*s2*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(236)!( 40, 79)( 41, 80)( 42, 81)( 43, 82)( 44, 83)( 45, 84)( 46, 85)
( 47, 86)( 48, 87)( 49, 88)( 50, 89)( 51, 90)( 52, 91)( 53, 92)( 54, 93)
( 55, 94)( 56, 95)( 57, 96)( 58, 97)( 59, 98)( 60, 99)( 61,100)( 62,101)
( 63,102)( 64,103)( 65,104)( 66,105)( 67,106)( 68,107)( 69,108)( 70,109)
( 71,110)( 72,111)( 73,112)( 74,113)( 75,114)( 76,115)( 77,116)( 78,117)
(157,196)(158,197)(159,198)(160,199)(161,200)(162,201)(163,202)(164,203)
(165,204)(166,205)(167,206)(168,207)(169,208)(170,209)(171,210)(172,211)
(173,212)(174,213)(175,214)(176,215)(177,216)(178,217)(179,218)(180,219)
(181,220)(182,221)(183,222)(184,223)(185,224)(186,225)(187,226)(188,227)
(189,228)(190,229)(191,230)(192,231)(193,232)(194,233)(195,234);
s1 := Sym(236)!( 1, 40)( 2, 52)( 3, 51)( 4, 50)( 5, 49)( 6, 48)( 7, 47)
( 8, 46)( 9, 45)( 10, 44)( 11, 43)( 12, 42)( 13, 41)( 14, 66)( 15, 78)
( 16, 77)( 17, 76)( 18, 75)( 19, 74)( 20, 73)( 21, 72)( 22, 71)( 23, 70)
( 24, 69)( 25, 68)( 26, 67)( 27, 53)( 28, 65)( 29, 64)( 30, 63)( 31, 62)
( 32, 61)( 33, 60)( 34, 59)( 35, 58)( 36, 57)( 37, 56)( 38, 55)( 39, 54)
( 80, 91)( 81, 90)( 82, 89)( 83, 88)( 84, 87)( 85, 86)( 92,105)( 93,117)
( 94,116)( 95,115)( 96,114)( 97,113)( 98,112)( 99,111)(100,110)(101,109)
(102,108)(103,107)(104,106)(118,157)(119,169)(120,168)(121,167)(122,166)
(123,165)(124,164)(125,163)(126,162)(127,161)(128,160)(129,159)(130,158)
(131,183)(132,195)(133,194)(134,193)(135,192)(136,191)(137,190)(138,189)
(139,188)(140,187)(141,186)(142,185)(143,184)(144,170)(145,182)(146,181)
(147,180)(148,179)(149,178)(150,177)(151,176)(152,175)(153,174)(154,173)
(155,172)(156,171)(197,208)(198,207)(199,206)(200,205)(201,204)(202,203)
(209,222)(210,234)(211,233)(212,232)(213,231)(214,230)(215,229)(216,228)
(217,227)(218,226)(219,225)(220,224)(221,223);
s2 := Sym(236)!( 1,132)( 2,131)( 3,143)( 4,142)( 5,141)( 6,140)( 7,139)
( 8,138)( 9,137)( 10,136)( 11,135)( 12,134)( 13,133)( 14,119)( 15,118)
( 16,130)( 17,129)( 18,128)( 19,127)( 20,126)( 21,125)( 22,124)( 23,123)
( 24,122)( 25,121)( 26,120)( 27,145)( 28,144)( 29,156)( 30,155)( 31,154)
( 32,153)( 33,152)( 34,151)( 35,150)( 36,149)( 37,148)( 38,147)( 39,146)
( 40,171)( 41,170)( 42,182)( 43,181)( 44,180)( 45,179)( 46,178)( 47,177)
( 48,176)( 49,175)( 50,174)( 51,173)( 52,172)( 53,158)( 54,157)( 55,169)
( 56,168)( 57,167)( 58,166)( 59,165)( 60,164)( 61,163)( 62,162)( 63,161)
( 64,160)( 65,159)( 66,184)( 67,183)( 68,195)( 69,194)( 70,193)( 71,192)
( 72,191)( 73,190)( 74,189)( 75,188)( 76,187)( 77,186)( 78,185)( 79,210)
( 80,209)( 81,221)( 82,220)( 83,219)( 84,218)( 85,217)( 86,216)( 87,215)
( 88,214)( 89,213)( 90,212)( 91,211)( 92,197)( 93,196)( 94,208)( 95,207)
( 96,206)( 97,205)( 98,204)( 99,203)(100,202)(101,201)(102,200)(103,199)
(104,198)(105,223)(106,222)(107,234)(108,233)(109,232)(110,231)(111,230)
(112,229)(113,228)(114,227)(115,226)(116,225)(117,224);
s3 := Sym(236)!(235,236);
poly := sub<Sym(236)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope