include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {234,4}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {234,4}*1872a
Also Known As : {234,4|2}. if this polytope has another name.
Group : SmallGroup(1872,238)
Rank : 3
Schlafli Type : {234,4}
Number of vertices, edges, etc : 234, 468, 4
Order of s0s1s2 : 468
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {234,2}*936
3-fold quotients : {78,4}*624a
4-fold quotients : {117,2}*468
6-fold quotients : {78,2}*312
9-fold quotients : {26,4}*208
12-fold quotients : {39,2}*156
13-fold quotients : {18,4}*144a
18-fold quotients : {26,2}*104
26-fold quotients : {18,2}*72
36-fold quotients : {13,2}*52
39-fold quotients : {6,4}*48a
52-fold quotients : {9,2}*36
78-fold quotients : {6,2}*24
117-fold quotients : {2,4}*16
156-fold quotients : {3,2}*12
234-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 37)( 5, 39)( 6, 38)( 7, 34)( 8, 36)( 9, 35)( 10, 31)
( 11, 33)( 12, 32)( 13, 28)( 14, 30)( 15, 29)( 16, 25)( 17, 27)( 18, 26)
( 19, 22)( 20, 24)( 21, 23)( 40, 81)( 41, 80)( 42, 79)( 43,117)( 44,116)
( 45,115)( 46,114)( 47,113)( 48,112)( 49,111)( 50,110)( 51,109)( 52,108)
( 53,107)( 54,106)( 55,105)( 56,104)( 57,103)( 58,102)( 59,101)( 60,100)
( 61, 99)( 62, 98)( 63, 97)( 64, 96)( 65, 95)( 66, 94)( 67, 93)( 68, 92)
( 69, 91)( 70, 90)( 71, 89)( 72, 88)( 73, 87)( 74, 86)( 75, 85)( 76, 84)
( 77, 83)( 78, 82)(119,120)(121,154)(122,156)(123,155)(124,151)(125,153)
(126,152)(127,148)(128,150)(129,149)(130,145)(131,147)(132,146)(133,142)
(134,144)(135,143)(136,139)(137,141)(138,140)(157,198)(158,197)(159,196)
(160,234)(161,233)(162,232)(163,231)(164,230)(165,229)(166,228)(167,227)
(168,226)(169,225)(170,224)(171,223)(172,222)(173,221)(174,220)(175,219)
(176,218)(177,217)(178,216)(179,215)(180,214)(181,213)(182,212)(183,211)
(184,210)(185,209)(186,208)(187,207)(188,206)(189,205)(190,204)(191,203)
(192,202)(193,201)(194,200)(195,199)(236,237)(238,271)(239,273)(240,272)
(241,268)(242,270)(243,269)(244,265)(245,267)(246,266)(247,262)(248,264)
(249,263)(250,259)(251,261)(252,260)(253,256)(254,258)(255,257)(274,315)
(275,314)(276,313)(277,351)(278,350)(279,349)(280,348)(281,347)(282,346)
(283,345)(284,344)(285,343)(286,342)(287,341)(288,340)(289,339)(290,338)
(291,337)(292,336)(293,335)(294,334)(295,333)(296,332)(297,331)(298,330)
(299,329)(300,328)(301,327)(302,326)(303,325)(304,324)(305,323)(306,322)
(307,321)(308,320)(309,319)(310,318)(311,317)(312,316)(353,354)(355,388)
(356,390)(357,389)(358,385)(359,387)(360,386)(361,382)(362,384)(363,383)
(364,379)(365,381)(366,380)(367,376)(368,378)(369,377)(370,373)(371,375)
(372,374)(391,432)(392,431)(393,430)(394,468)(395,467)(396,466)(397,465)
(398,464)(399,463)(400,462)(401,461)(402,460)(403,459)(404,458)(405,457)
(406,456)(407,455)(408,454)(409,453)(410,452)(411,451)(412,450)(413,449)
(414,448)(415,447)(416,446)(417,445)(418,444)(419,443)(420,442)(421,441)
(422,440)(423,439)(424,438)(425,437)(426,436)(427,435)(428,434)(429,433);;
s1 := ( 1, 43)( 2, 45)( 3, 44)( 4, 40)( 5, 42)( 6, 41)( 7, 76)( 8, 78)
( 9, 77)( 10, 73)( 11, 75)( 12, 74)( 13, 70)( 14, 72)( 15, 71)( 16, 67)
( 17, 69)( 18, 68)( 19, 64)( 20, 66)( 21, 65)( 22, 61)( 23, 63)( 24, 62)
( 25, 58)( 26, 60)( 27, 59)( 28, 55)( 29, 57)( 30, 56)( 31, 52)( 32, 54)
( 33, 53)( 34, 49)( 35, 51)( 36, 50)( 37, 46)( 38, 48)( 39, 47)( 79, 84)
( 80, 83)( 81, 82)( 85,117)( 86,116)( 87,115)( 88,114)( 89,113)( 90,112)
( 91,111)( 92,110)( 93,109)( 94,108)( 95,107)( 96,106)( 97,105)( 98,104)
( 99,103)(100,102)(118,160)(119,162)(120,161)(121,157)(122,159)(123,158)
(124,193)(125,195)(126,194)(127,190)(128,192)(129,191)(130,187)(131,189)
(132,188)(133,184)(134,186)(135,185)(136,181)(137,183)(138,182)(139,178)
(140,180)(141,179)(142,175)(143,177)(144,176)(145,172)(146,174)(147,173)
(148,169)(149,171)(150,170)(151,166)(152,168)(153,167)(154,163)(155,165)
(156,164)(196,201)(197,200)(198,199)(202,234)(203,233)(204,232)(205,231)
(206,230)(207,229)(208,228)(209,227)(210,226)(211,225)(212,224)(213,223)
(214,222)(215,221)(216,220)(217,219)(235,394)(236,396)(237,395)(238,391)
(239,393)(240,392)(241,427)(242,429)(243,428)(244,424)(245,426)(246,425)
(247,421)(248,423)(249,422)(250,418)(251,420)(252,419)(253,415)(254,417)
(255,416)(256,412)(257,414)(258,413)(259,409)(260,411)(261,410)(262,406)
(263,408)(264,407)(265,403)(266,405)(267,404)(268,400)(269,402)(270,401)
(271,397)(272,399)(273,398)(274,355)(275,357)(276,356)(277,352)(278,354)
(279,353)(280,388)(281,390)(282,389)(283,385)(284,387)(285,386)(286,382)
(287,384)(288,383)(289,379)(290,381)(291,380)(292,376)(293,378)(294,377)
(295,373)(296,375)(297,374)(298,370)(299,372)(300,371)(301,367)(302,369)
(303,368)(304,364)(305,366)(306,365)(307,361)(308,363)(309,362)(310,358)
(311,360)(312,359)(313,435)(314,434)(315,433)(316,432)(317,431)(318,430)
(319,468)(320,467)(321,466)(322,465)(323,464)(324,463)(325,462)(326,461)
(327,460)(328,459)(329,458)(330,457)(331,456)(332,455)(333,454)(334,453)
(335,452)(336,451)(337,450)(338,449)(339,448)(340,447)(341,446)(342,445)
(343,444)(344,443)(345,442)(346,441)(347,440)(348,439)(349,438)(350,437)
(351,436);;
s2 := ( 1,235)( 2,236)( 3,237)( 4,238)( 5,239)( 6,240)( 7,241)( 8,242)
( 9,243)( 10,244)( 11,245)( 12,246)( 13,247)( 14,248)( 15,249)( 16,250)
( 17,251)( 18,252)( 19,253)( 20,254)( 21,255)( 22,256)( 23,257)( 24,258)
( 25,259)( 26,260)( 27,261)( 28,262)( 29,263)( 30,264)( 31,265)( 32,266)
( 33,267)( 34,268)( 35,269)( 36,270)( 37,271)( 38,272)( 39,273)( 40,274)
( 41,275)( 42,276)( 43,277)( 44,278)( 45,279)( 46,280)( 47,281)( 48,282)
( 49,283)( 50,284)( 51,285)( 52,286)( 53,287)( 54,288)( 55,289)( 56,290)
( 57,291)( 58,292)( 59,293)( 60,294)( 61,295)( 62,296)( 63,297)( 64,298)
( 65,299)( 66,300)( 67,301)( 68,302)( 69,303)( 70,304)( 71,305)( 72,306)
( 73,307)( 74,308)( 75,309)( 76,310)( 77,311)( 78,312)( 79,313)( 80,314)
( 81,315)( 82,316)( 83,317)( 84,318)( 85,319)( 86,320)( 87,321)( 88,322)
( 89,323)( 90,324)( 91,325)( 92,326)( 93,327)( 94,328)( 95,329)( 96,330)
( 97,331)( 98,332)( 99,333)(100,334)(101,335)(102,336)(103,337)(104,338)
(105,339)(106,340)(107,341)(108,342)(109,343)(110,344)(111,345)(112,346)
(113,347)(114,348)(115,349)(116,350)(117,351)(118,352)(119,353)(120,354)
(121,355)(122,356)(123,357)(124,358)(125,359)(126,360)(127,361)(128,362)
(129,363)(130,364)(131,365)(132,366)(133,367)(134,368)(135,369)(136,370)
(137,371)(138,372)(139,373)(140,374)(141,375)(142,376)(143,377)(144,378)
(145,379)(146,380)(147,381)(148,382)(149,383)(150,384)(151,385)(152,386)
(153,387)(154,388)(155,389)(156,390)(157,391)(158,392)(159,393)(160,394)
(161,395)(162,396)(163,397)(164,398)(165,399)(166,400)(167,401)(168,402)
(169,403)(170,404)(171,405)(172,406)(173,407)(174,408)(175,409)(176,410)
(177,411)(178,412)(179,413)(180,414)(181,415)(182,416)(183,417)(184,418)
(185,419)(186,420)(187,421)(188,422)(189,423)(190,424)(191,425)(192,426)
(193,427)(194,428)(195,429)(196,430)(197,431)(198,432)(199,433)(200,434)
(201,435)(202,436)(203,437)(204,438)(205,439)(206,440)(207,441)(208,442)
(209,443)(210,444)(211,445)(212,446)(213,447)(214,448)(215,449)(216,450)
(217,451)(218,452)(219,453)(220,454)(221,455)(222,456)(223,457)(224,458)
(225,459)(226,460)(227,461)(228,462)(229,463)(230,464)(231,465)(232,466)
(233,467)(234,468);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(468)!( 2, 3)( 4, 37)( 5, 39)( 6, 38)( 7, 34)( 8, 36)( 9, 35)
( 10, 31)( 11, 33)( 12, 32)( 13, 28)( 14, 30)( 15, 29)( 16, 25)( 17, 27)
( 18, 26)( 19, 22)( 20, 24)( 21, 23)( 40, 81)( 41, 80)( 42, 79)( 43,117)
( 44,116)( 45,115)( 46,114)( 47,113)( 48,112)( 49,111)( 50,110)( 51,109)
( 52,108)( 53,107)( 54,106)( 55,105)( 56,104)( 57,103)( 58,102)( 59,101)
( 60,100)( 61, 99)( 62, 98)( 63, 97)( 64, 96)( 65, 95)( 66, 94)( 67, 93)
( 68, 92)( 69, 91)( 70, 90)( 71, 89)( 72, 88)( 73, 87)( 74, 86)( 75, 85)
( 76, 84)( 77, 83)( 78, 82)(119,120)(121,154)(122,156)(123,155)(124,151)
(125,153)(126,152)(127,148)(128,150)(129,149)(130,145)(131,147)(132,146)
(133,142)(134,144)(135,143)(136,139)(137,141)(138,140)(157,198)(158,197)
(159,196)(160,234)(161,233)(162,232)(163,231)(164,230)(165,229)(166,228)
(167,227)(168,226)(169,225)(170,224)(171,223)(172,222)(173,221)(174,220)
(175,219)(176,218)(177,217)(178,216)(179,215)(180,214)(181,213)(182,212)
(183,211)(184,210)(185,209)(186,208)(187,207)(188,206)(189,205)(190,204)
(191,203)(192,202)(193,201)(194,200)(195,199)(236,237)(238,271)(239,273)
(240,272)(241,268)(242,270)(243,269)(244,265)(245,267)(246,266)(247,262)
(248,264)(249,263)(250,259)(251,261)(252,260)(253,256)(254,258)(255,257)
(274,315)(275,314)(276,313)(277,351)(278,350)(279,349)(280,348)(281,347)
(282,346)(283,345)(284,344)(285,343)(286,342)(287,341)(288,340)(289,339)
(290,338)(291,337)(292,336)(293,335)(294,334)(295,333)(296,332)(297,331)
(298,330)(299,329)(300,328)(301,327)(302,326)(303,325)(304,324)(305,323)
(306,322)(307,321)(308,320)(309,319)(310,318)(311,317)(312,316)(353,354)
(355,388)(356,390)(357,389)(358,385)(359,387)(360,386)(361,382)(362,384)
(363,383)(364,379)(365,381)(366,380)(367,376)(368,378)(369,377)(370,373)
(371,375)(372,374)(391,432)(392,431)(393,430)(394,468)(395,467)(396,466)
(397,465)(398,464)(399,463)(400,462)(401,461)(402,460)(403,459)(404,458)
(405,457)(406,456)(407,455)(408,454)(409,453)(410,452)(411,451)(412,450)
(413,449)(414,448)(415,447)(416,446)(417,445)(418,444)(419,443)(420,442)
(421,441)(422,440)(423,439)(424,438)(425,437)(426,436)(427,435)(428,434)
(429,433);
s1 := Sym(468)!( 1, 43)( 2, 45)( 3, 44)( 4, 40)( 5, 42)( 6, 41)( 7, 76)
( 8, 78)( 9, 77)( 10, 73)( 11, 75)( 12, 74)( 13, 70)( 14, 72)( 15, 71)
( 16, 67)( 17, 69)( 18, 68)( 19, 64)( 20, 66)( 21, 65)( 22, 61)( 23, 63)
( 24, 62)( 25, 58)( 26, 60)( 27, 59)( 28, 55)( 29, 57)( 30, 56)( 31, 52)
( 32, 54)( 33, 53)( 34, 49)( 35, 51)( 36, 50)( 37, 46)( 38, 48)( 39, 47)
( 79, 84)( 80, 83)( 81, 82)( 85,117)( 86,116)( 87,115)( 88,114)( 89,113)
( 90,112)( 91,111)( 92,110)( 93,109)( 94,108)( 95,107)( 96,106)( 97,105)
( 98,104)( 99,103)(100,102)(118,160)(119,162)(120,161)(121,157)(122,159)
(123,158)(124,193)(125,195)(126,194)(127,190)(128,192)(129,191)(130,187)
(131,189)(132,188)(133,184)(134,186)(135,185)(136,181)(137,183)(138,182)
(139,178)(140,180)(141,179)(142,175)(143,177)(144,176)(145,172)(146,174)
(147,173)(148,169)(149,171)(150,170)(151,166)(152,168)(153,167)(154,163)
(155,165)(156,164)(196,201)(197,200)(198,199)(202,234)(203,233)(204,232)
(205,231)(206,230)(207,229)(208,228)(209,227)(210,226)(211,225)(212,224)
(213,223)(214,222)(215,221)(216,220)(217,219)(235,394)(236,396)(237,395)
(238,391)(239,393)(240,392)(241,427)(242,429)(243,428)(244,424)(245,426)
(246,425)(247,421)(248,423)(249,422)(250,418)(251,420)(252,419)(253,415)
(254,417)(255,416)(256,412)(257,414)(258,413)(259,409)(260,411)(261,410)
(262,406)(263,408)(264,407)(265,403)(266,405)(267,404)(268,400)(269,402)
(270,401)(271,397)(272,399)(273,398)(274,355)(275,357)(276,356)(277,352)
(278,354)(279,353)(280,388)(281,390)(282,389)(283,385)(284,387)(285,386)
(286,382)(287,384)(288,383)(289,379)(290,381)(291,380)(292,376)(293,378)
(294,377)(295,373)(296,375)(297,374)(298,370)(299,372)(300,371)(301,367)
(302,369)(303,368)(304,364)(305,366)(306,365)(307,361)(308,363)(309,362)
(310,358)(311,360)(312,359)(313,435)(314,434)(315,433)(316,432)(317,431)
(318,430)(319,468)(320,467)(321,466)(322,465)(323,464)(324,463)(325,462)
(326,461)(327,460)(328,459)(329,458)(330,457)(331,456)(332,455)(333,454)
(334,453)(335,452)(336,451)(337,450)(338,449)(339,448)(340,447)(341,446)
(342,445)(343,444)(344,443)(345,442)(346,441)(347,440)(348,439)(349,438)
(350,437)(351,436);
s2 := Sym(468)!( 1,235)( 2,236)( 3,237)( 4,238)( 5,239)( 6,240)( 7,241)
( 8,242)( 9,243)( 10,244)( 11,245)( 12,246)( 13,247)( 14,248)( 15,249)
( 16,250)( 17,251)( 18,252)( 19,253)( 20,254)( 21,255)( 22,256)( 23,257)
( 24,258)( 25,259)( 26,260)( 27,261)( 28,262)( 29,263)( 30,264)( 31,265)
( 32,266)( 33,267)( 34,268)( 35,269)( 36,270)( 37,271)( 38,272)( 39,273)
( 40,274)( 41,275)( 42,276)( 43,277)( 44,278)( 45,279)( 46,280)( 47,281)
( 48,282)( 49,283)( 50,284)( 51,285)( 52,286)( 53,287)( 54,288)( 55,289)
( 56,290)( 57,291)( 58,292)( 59,293)( 60,294)( 61,295)( 62,296)( 63,297)
( 64,298)( 65,299)( 66,300)( 67,301)( 68,302)( 69,303)( 70,304)( 71,305)
( 72,306)( 73,307)( 74,308)( 75,309)( 76,310)( 77,311)( 78,312)( 79,313)
( 80,314)( 81,315)( 82,316)( 83,317)( 84,318)( 85,319)( 86,320)( 87,321)
( 88,322)( 89,323)( 90,324)( 91,325)( 92,326)( 93,327)( 94,328)( 95,329)
( 96,330)( 97,331)( 98,332)( 99,333)(100,334)(101,335)(102,336)(103,337)
(104,338)(105,339)(106,340)(107,341)(108,342)(109,343)(110,344)(111,345)
(112,346)(113,347)(114,348)(115,349)(116,350)(117,351)(118,352)(119,353)
(120,354)(121,355)(122,356)(123,357)(124,358)(125,359)(126,360)(127,361)
(128,362)(129,363)(130,364)(131,365)(132,366)(133,367)(134,368)(135,369)
(136,370)(137,371)(138,372)(139,373)(140,374)(141,375)(142,376)(143,377)
(144,378)(145,379)(146,380)(147,381)(148,382)(149,383)(150,384)(151,385)
(152,386)(153,387)(154,388)(155,389)(156,390)(157,391)(158,392)(159,393)
(160,394)(161,395)(162,396)(163,397)(164,398)(165,399)(166,400)(167,401)
(168,402)(169,403)(170,404)(171,405)(172,406)(173,407)(174,408)(175,409)
(176,410)(177,411)(178,412)(179,413)(180,414)(181,415)(182,416)(183,417)
(184,418)(185,419)(186,420)(187,421)(188,422)(189,423)(190,424)(191,425)
(192,426)(193,427)(194,428)(195,429)(196,430)(197,431)(198,432)(199,433)
(200,434)(201,435)(202,436)(203,437)(204,438)(205,439)(206,440)(207,441)
(208,442)(209,443)(210,444)(211,445)(212,446)(213,447)(214,448)(215,449)
(216,450)(217,451)(218,452)(219,453)(220,454)(221,455)(222,456)(223,457)
(224,458)(225,459)(226,460)(227,461)(228,462)(229,463)(230,464)(231,465)
(232,466)(233,467)(234,468);
poly := sub<Sym(468)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope