Polytope of Type {13,2,2,18}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {13,2,2,18}*1872
if this polytope has a name.
Group : SmallGroup(1872,548)
Rank : 5
Schlafli Type : {13,2,2,18}
Number of vertices, edges, etc : 13, 13, 2, 18, 18
Order of s0s1s2s3s4 : 234
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {13,2,2,9}*936
   3-fold quotients : {13,2,2,6}*624
   6-fold quotients : {13,2,2,3}*312
   9-fold quotients : {13,2,2,2}*208
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);;
s1 := ( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);;
s2 := (14,15);;
s3 := (18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33);;
s4 := (16,20)(17,18)(19,24)(21,22)(23,28)(25,26)(27,32)(29,30)(31,33);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2, 
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4, 
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(33)!( 2, 3)( 4, 5)( 6, 7)( 8, 9)(10,11)(12,13);
s1 := Sym(33)!( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12);
s2 := Sym(33)!(14,15);
s3 := Sym(33)!(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31)(32,33);
s4 := Sym(33)!(16,20)(17,18)(19,24)(21,22)(23,28)(25,26)(27,32)(29,30)(31,33);
poly := sub<Sym(33)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >; 
 

to this polytope