include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,118,2,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,118,2,2}*1888
if this polytope has a name.
Group : SmallGroup(1888,195)
Rank : 5
Schlafli Type : {2,118,2,2}
Number of vertices, edges, etc : 2, 118, 118, 2, 2
Order of s0s1s2s3s4 : 118
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,59,2,2}*944
59-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 61)( 5, 60)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 55)( 11, 54)
( 12, 53)( 13, 52)( 14, 51)( 15, 50)( 16, 49)( 17, 48)( 18, 47)( 19, 46)
( 20, 45)( 21, 44)( 22, 43)( 23, 42)( 24, 41)( 25, 40)( 26, 39)( 27, 38)
( 28, 37)( 29, 36)( 30, 35)( 31, 34)( 32, 33)( 63,120)( 64,119)( 65,118)
( 66,117)( 67,116)( 68,115)( 69,114)( 70,113)( 71,112)( 72,111)( 73,110)
( 74,109)( 75,108)( 76,107)( 77,106)( 78,105)( 79,104)( 80,103)( 81,102)
( 82,101)( 83,100)( 84, 99)( 85, 98)( 86, 97)( 87, 96)( 88, 95)( 89, 94)
( 90, 93)( 91, 92);;
s2 := ( 3, 63)( 4, 62)( 5,120)( 6,119)( 7,118)( 8,117)( 9,116)( 10,115)
( 11,114)( 12,113)( 13,112)( 14,111)( 15,110)( 16,109)( 17,108)( 18,107)
( 19,106)( 20,105)( 21,104)( 22,103)( 23,102)( 24,101)( 25,100)( 26, 99)
( 27, 98)( 28, 97)( 29, 96)( 30, 95)( 31, 94)( 32, 93)( 33, 92)( 34, 91)
( 35, 90)( 36, 89)( 37, 88)( 38, 87)( 39, 86)( 40, 85)( 41, 84)( 42, 83)
( 43, 82)( 44, 81)( 45, 80)( 46, 79)( 47, 78)( 48, 77)( 49, 76)( 50, 75)
( 51, 74)( 52, 73)( 53, 72)( 54, 71)( 55, 70)( 56, 69)( 57, 68)( 58, 67)
( 59, 66)( 60, 65)( 61, 64);;
s3 := (121,122);;
s4 := (123,124);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(124)!(1,2);
s1 := Sym(124)!( 4, 61)( 5, 60)( 6, 59)( 7, 58)( 8, 57)( 9, 56)( 10, 55)
( 11, 54)( 12, 53)( 13, 52)( 14, 51)( 15, 50)( 16, 49)( 17, 48)( 18, 47)
( 19, 46)( 20, 45)( 21, 44)( 22, 43)( 23, 42)( 24, 41)( 25, 40)( 26, 39)
( 27, 38)( 28, 37)( 29, 36)( 30, 35)( 31, 34)( 32, 33)( 63,120)( 64,119)
( 65,118)( 66,117)( 67,116)( 68,115)( 69,114)( 70,113)( 71,112)( 72,111)
( 73,110)( 74,109)( 75,108)( 76,107)( 77,106)( 78,105)( 79,104)( 80,103)
( 81,102)( 82,101)( 83,100)( 84, 99)( 85, 98)( 86, 97)( 87, 96)( 88, 95)
( 89, 94)( 90, 93)( 91, 92);
s2 := Sym(124)!( 3, 63)( 4, 62)( 5,120)( 6,119)( 7,118)( 8,117)( 9,116)
( 10,115)( 11,114)( 12,113)( 13,112)( 14,111)( 15,110)( 16,109)( 17,108)
( 18,107)( 19,106)( 20,105)( 21,104)( 22,103)( 23,102)( 24,101)( 25,100)
( 26, 99)( 27, 98)( 28, 97)( 29, 96)( 30, 95)( 31, 94)( 32, 93)( 33, 92)
( 34, 91)( 35, 90)( 36, 89)( 37, 88)( 38, 87)( 39, 86)( 40, 85)( 41, 84)
( 42, 83)( 43, 82)( 44, 81)( 45, 80)( 46, 79)( 47, 78)( 48, 77)( 49, 76)
( 50, 75)( 51, 74)( 52, 73)( 53, 72)( 54, 71)( 55, 70)( 56, 69)( 57, 68)
( 58, 67)( 59, 66)( 60, 65)( 61, 64);
s3 := Sym(124)!(121,122);
s4 := Sym(124)!(123,124);
poly := sub<Sym(124)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s3*s4*s3*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope