include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {158,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {158,6}*1896
Also Known As : {158,6|2}. if this polytope has another name.
Group : SmallGroup(1896,47)
Rank : 3
Schlafli Type : {158,6}
Number of vertices, edges, etc : 158, 474, 6
Order of s0s1s2 : 474
Order of s0s1s2s1 : 2
Special Properties :
Compact Hyperbolic Quotient
Locally Spherical
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
3-fold quotients : {158,2}*632
6-fold quotients : {79,2}*316
79-fold quotients : {2,6}*24
158-fold quotients : {2,3}*12
237-fold quotients : {2,2}*8
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 79)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)( 9, 72)
( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 67)( 15, 66)( 16, 65)( 17, 64)
( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)( 25, 56)
( 26, 55)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 50)( 32, 49)( 33, 48)
( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)( 81,158)
( 82,157)( 83,156)( 84,155)( 85,154)( 86,153)( 87,152)( 88,151)( 89,150)
( 90,149)( 91,148)( 92,147)( 93,146)( 94,145)( 95,144)( 96,143)( 97,142)
( 98,141)( 99,140)(100,139)(101,138)(102,137)(103,136)(104,135)(105,134)
(106,133)(107,132)(108,131)(109,130)(110,129)(111,128)(112,127)(113,126)
(114,125)(115,124)(116,123)(117,122)(118,121)(119,120)(160,237)(161,236)
(162,235)(163,234)(164,233)(165,232)(166,231)(167,230)(168,229)(169,228)
(170,227)(171,226)(172,225)(173,224)(174,223)(175,222)(176,221)(177,220)
(178,219)(179,218)(180,217)(181,216)(182,215)(183,214)(184,213)(185,212)
(186,211)(187,210)(188,209)(189,208)(190,207)(191,206)(192,205)(193,204)
(194,203)(195,202)(196,201)(197,200)(198,199)(239,316)(240,315)(241,314)
(242,313)(243,312)(244,311)(245,310)(246,309)(247,308)(248,307)(249,306)
(250,305)(251,304)(252,303)(253,302)(254,301)(255,300)(256,299)(257,298)
(258,297)(259,296)(260,295)(261,294)(262,293)(263,292)(264,291)(265,290)
(266,289)(267,288)(268,287)(269,286)(270,285)(271,284)(272,283)(273,282)
(274,281)(275,280)(276,279)(277,278)(318,395)(319,394)(320,393)(321,392)
(322,391)(323,390)(324,389)(325,388)(326,387)(327,386)(328,385)(329,384)
(330,383)(331,382)(332,381)(333,380)(334,379)(335,378)(336,377)(337,376)
(338,375)(339,374)(340,373)(341,372)(342,371)(343,370)(344,369)(345,368)
(346,367)(347,366)(348,365)(349,364)(350,363)(351,362)(352,361)(353,360)
(354,359)(355,358)(356,357)(397,474)(398,473)(399,472)(400,471)(401,470)
(402,469)(403,468)(404,467)(405,466)(406,465)(407,464)(408,463)(409,462)
(410,461)(411,460)(412,459)(413,458)(414,457)(415,456)(416,455)(417,454)
(418,453)(419,452)(420,451)(421,450)(422,449)(423,448)(424,447)(425,446)
(426,445)(427,444)(428,443)(429,442)(430,441)(431,440)(432,439)(433,438)
(434,437)(435,436);;
s1 := ( 1, 2)( 3, 79)( 4, 78)( 5, 77)( 6, 76)( 7, 75)( 8, 74)( 9, 73)
( 10, 72)( 11, 71)( 12, 70)( 13, 69)( 14, 68)( 15, 67)( 16, 66)( 17, 65)
( 18, 64)( 19, 63)( 20, 62)( 21, 61)( 22, 60)( 23, 59)( 24, 58)( 25, 57)
( 26, 56)( 27, 55)( 28, 54)( 29, 53)( 30, 52)( 31, 51)( 32, 50)( 33, 49)
( 34, 48)( 35, 47)( 36, 46)( 37, 45)( 38, 44)( 39, 43)( 40, 42)( 80,160)
( 81,159)( 82,237)( 83,236)( 84,235)( 85,234)( 86,233)( 87,232)( 88,231)
( 89,230)( 90,229)( 91,228)( 92,227)( 93,226)( 94,225)( 95,224)( 96,223)
( 97,222)( 98,221)( 99,220)(100,219)(101,218)(102,217)(103,216)(104,215)
(105,214)(106,213)(107,212)(108,211)(109,210)(110,209)(111,208)(112,207)
(113,206)(114,205)(115,204)(116,203)(117,202)(118,201)(119,200)(120,199)
(121,198)(122,197)(123,196)(124,195)(125,194)(126,193)(127,192)(128,191)
(129,190)(130,189)(131,188)(132,187)(133,186)(134,185)(135,184)(136,183)
(137,182)(138,181)(139,180)(140,179)(141,178)(142,177)(143,176)(144,175)
(145,174)(146,173)(147,172)(148,171)(149,170)(150,169)(151,168)(152,167)
(153,166)(154,165)(155,164)(156,163)(157,162)(158,161)(238,239)(240,316)
(241,315)(242,314)(243,313)(244,312)(245,311)(246,310)(247,309)(248,308)
(249,307)(250,306)(251,305)(252,304)(253,303)(254,302)(255,301)(256,300)
(257,299)(258,298)(259,297)(260,296)(261,295)(262,294)(263,293)(264,292)
(265,291)(266,290)(267,289)(268,288)(269,287)(270,286)(271,285)(272,284)
(273,283)(274,282)(275,281)(276,280)(277,279)(317,397)(318,396)(319,474)
(320,473)(321,472)(322,471)(323,470)(324,469)(325,468)(326,467)(327,466)
(328,465)(329,464)(330,463)(331,462)(332,461)(333,460)(334,459)(335,458)
(336,457)(337,456)(338,455)(339,454)(340,453)(341,452)(342,451)(343,450)
(344,449)(345,448)(346,447)(347,446)(348,445)(349,444)(350,443)(351,442)
(352,441)(353,440)(354,439)(355,438)(356,437)(357,436)(358,435)(359,434)
(360,433)(361,432)(362,431)(363,430)(364,429)(365,428)(366,427)(367,426)
(368,425)(369,424)(370,423)(371,422)(372,421)(373,420)(374,419)(375,418)
(376,417)(377,416)(378,415)(379,414)(380,413)(381,412)(382,411)(383,410)
(384,409)(385,408)(386,407)(387,406)(388,405)(389,404)(390,403)(391,402)
(392,401)(393,400)(394,399)(395,398);;
s2 := ( 1,317)( 2,318)( 3,319)( 4,320)( 5,321)( 6,322)( 7,323)( 8,324)
( 9,325)( 10,326)( 11,327)( 12,328)( 13,329)( 14,330)( 15,331)( 16,332)
( 17,333)( 18,334)( 19,335)( 20,336)( 21,337)( 22,338)( 23,339)( 24,340)
( 25,341)( 26,342)( 27,343)( 28,344)( 29,345)( 30,346)( 31,347)( 32,348)
( 33,349)( 34,350)( 35,351)( 36,352)( 37,353)( 38,354)( 39,355)( 40,356)
( 41,357)( 42,358)( 43,359)( 44,360)( 45,361)( 46,362)( 47,363)( 48,364)
( 49,365)( 50,366)( 51,367)( 52,368)( 53,369)( 54,370)( 55,371)( 56,372)
( 57,373)( 58,374)( 59,375)( 60,376)( 61,377)( 62,378)( 63,379)( 64,380)
( 65,381)( 66,382)( 67,383)( 68,384)( 69,385)( 70,386)( 71,387)( 72,388)
( 73,389)( 74,390)( 75,391)( 76,392)( 77,393)( 78,394)( 79,395)( 80,238)
( 81,239)( 82,240)( 83,241)( 84,242)( 85,243)( 86,244)( 87,245)( 88,246)
( 89,247)( 90,248)( 91,249)( 92,250)( 93,251)( 94,252)( 95,253)( 96,254)
( 97,255)( 98,256)( 99,257)(100,258)(101,259)(102,260)(103,261)(104,262)
(105,263)(106,264)(107,265)(108,266)(109,267)(110,268)(111,269)(112,270)
(113,271)(114,272)(115,273)(116,274)(117,275)(118,276)(119,277)(120,278)
(121,279)(122,280)(123,281)(124,282)(125,283)(126,284)(127,285)(128,286)
(129,287)(130,288)(131,289)(132,290)(133,291)(134,292)(135,293)(136,294)
(137,295)(138,296)(139,297)(140,298)(141,299)(142,300)(143,301)(144,302)
(145,303)(146,304)(147,305)(148,306)(149,307)(150,308)(151,309)(152,310)
(153,311)(154,312)(155,313)(156,314)(157,315)(158,316)(159,396)(160,397)
(161,398)(162,399)(163,400)(164,401)(165,402)(166,403)(167,404)(168,405)
(169,406)(170,407)(171,408)(172,409)(173,410)(174,411)(175,412)(176,413)
(177,414)(178,415)(179,416)(180,417)(181,418)(182,419)(183,420)(184,421)
(185,422)(186,423)(187,424)(188,425)(189,426)(190,427)(191,428)(192,429)
(193,430)(194,431)(195,432)(196,433)(197,434)(198,435)(199,436)(200,437)
(201,438)(202,439)(203,440)(204,441)(205,442)(206,443)(207,444)(208,445)
(209,446)(210,447)(211,448)(212,449)(213,450)(214,451)(215,452)(216,453)
(217,454)(218,455)(219,456)(220,457)(221,458)(222,459)(223,460)(224,461)
(225,462)(226,463)(227,464)(228,465)(229,466)(230,467)(231,468)(232,469)
(233,470)(234,471)(235,472)(236,473)(237,474);;
poly := Group([s0,s1,s2]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2");;
s0 := F.1;; s1 := F.2;; s2 := F.3;;
rels := [ s0*s0, s1*s1, s2*s2, s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(474)!( 2, 79)( 3, 78)( 4, 77)( 5, 76)( 6, 75)( 7, 74)( 8, 73)
( 9, 72)( 10, 71)( 11, 70)( 12, 69)( 13, 68)( 14, 67)( 15, 66)( 16, 65)
( 17, 64)( 18, 63)( 19, 62)( 20, 61)( 21, 60)( 22, 59)( 23, 58)( 24, 57)
( 25, 56)( 26, 55)( 27, 54)( 28, 53)( 29, 52)( 30, 51)( 31, 50)( 32, 49)
( 33, 48)( 34, 47)( 35, 46)( 36, 45)( 37, 44)( 38, 43)( 39, 42)( 40, 41)
( 81,158)( 82,157)( 83,156)( 84,155)( 85,154)( 86,153)( 87,152)( 88,151)
( 89,150)( 90,149)( 91,148)( 92,147)( 93,146)( 94,145)( 95,144)( 96,143)
( 97,142)( 98,141)( 99,140)(100,139)(101,138)(102,137)(103,136)(104,135)
(105,134)(106,133)(107,132)(108,131)(109,130)(110,129)(111,128)(112,127)
(113,126)(114,125)(115,124)(116,123)(117,122)(118,121)(119,120)(160,237)
(161,236)(162,235)(163,234)(164,233)(165,232)(166,231)(167,230)(168,229)
(169,228)(170,227)(171,226)(172,225)(173,224)(174,223)(175,222)(176,221)
(177,220)(178,219)(179,218)(180,217)(181,216)(182,215)(183,214)(184,213)
(185,212)(186,211)(187,210)(188,209)(189,208)(190,207)(191,206)(192,205)
(193,204)(194,203)(195,202)(196,201)(197,200)(198,199)(239,316)(240,315)
(241,314)(242,313)(243,312)(244,311)(245,310)(246,309)(247,308)(248,307)
(249,306)(250,305)(251,304)(252,303)(253,302)(254,301)(255,300)(256,299)
(257,298)(258,297)(259,296)(260,295)(261,294)(262,293)(263,292)(264,291)
(265,290)(266,289)(267,288)(268,287)(269,286)(270,285)(271,284)(272,283)
(273,282)(274,281)(275,280)(276,279)(277,278)(318,395)(319,394)(320,393)
(321,392)(322,391)(323,390)(324,389)(325,388)(326,387)(327,386)(328,385)
(329,384)(330,383)(331,382)(332,381)(333,380)(334,379)(335,378)(336,377)
(337,376)(338,375)(339,374)(340,373)(341,372)(342,371)(343,370)(344,369)
(345,368)(346,367)(347,366)(348,365)(349,364)(350,363)(351,362)(352,361)
(353,360)(354,359)(355,358)(356,357)(397,474)(398,473)(399,472)(400,471)
(401,470)(402,469)(403,468)(404,467)(405,466)(406,465)(407,464)(408,463)
(409,462)(410,461)(411,460)(412,459)(413,458)(414,457)(415,456)(416,455)
(417,454)(418,453)(419,452)(420,451)(421,450)(422,449)(423,448)(424,447)
(425,446)(426,445)(427,444)(428,443)(429,442)(430,441)(431,440)(432,439)
(433,438)(434,437)(435,436);
s1 := Sym(474)!( 1, 2)( 3, 79)( 4, 78)( 5, 77)( 6, 76)( 7, 75)( 8, 74)
( 9, 73)( 10, 72)( 11, 71)( 12, 70)( 13, 69)( 14, 68)( 15, 67)( 16, 66)
( 17, 65)( 18, 64)( 19, 63)( 20, 62)( 21, 61)( 22, 60)( 23, 59)( 24, 58)
( 25, 57)( 26, 56)( 27, 55)( 28, 54)( 29, 53)( 30, 52)( 31, 51)( 32, 50)
( 33, 49)( 34, 48)( 35, 47)( 36, 46)( 37, 45)( 38, 44)( 39, 43)( 40, 42)
( 80,160)( 81,159)( 82,237)( 83,236)( 84,235)( 85,234)( 86,233)( 87,232)
( 88,231)( 89,230)( 90,229)( 91,228)( 92,227)( 93,226)( 94,225)( 95,224)
( 96,223)( 97,222)( 98,221)( 99,220)(100,219)(101,218)(102,217)(103,216)
(104,215)(105,214)(106,213)(107,212)(108,211)(109,210)(110,209)(111,208)
(112,207)(113,206)(114,205)(115,204)(116,203)(117,202)(118,201)(119,200)
(120,199)(121,198)(122,197)(123,196)(124,195)(125,194)(126,193)(127,192)
(128,191)(129,190)(130,189)(131,188)(132,187)(133,186)(134,185)(135,184)
(136,183)(137,182)(138,181)(139,180)(140,179)(141,178)(142,177)(143,176)
(144,175)(145,174)(146,173)(147,172)(148,171)(149,170)(150,169)(151,168)
(152,167)(153,166)(154,165)(155,164)(156,163)(157,162)(158,161)(238,239)
(240,316)(241,315)(242,314)(243,313)(244,312)(245,311)(246,310)(247,309)
(248,308)(249,307)(250,306)(251,305)(252,304)(253,303)(254,302)(255,301)
(256,300)(257,299)(258,298)(259,297)(260,296)(261,295)(262,294)(263,293)
(264,292)(265,291)(266,290)(267,289)(268,288)(269,287)(270,286)(271,285)
(272,284)(273,283)(274,282)(275,281)(276,280)(277,279)(317,397)(318,396)
(319,474)(320,473)(321,472)(322,471)(323,470)(324,469)(325,468)(326,467)
(327,466)(328,465)(329,464)(330,463)(331,462)(332,461)(333,460)(334,459)
(335,458)(336,457)(337,456)(338,455)(339,454)(340,453)(341,452)(342,451)
(343,450)(344,449)(345,448)(346,447)(347,446)(348,445)(349,444)(350,443)
(351,442)(352,441)(353,440)(354,439)(355,438)(356,437)(357,436)(358,435)
(359,434)(360,433)(361,432)(362,431)(363,430)(364,429)(365,428)(366,427)
(367,426)(368,425)(369,424)(370,423)(371,422)(372,421)(373,420)(374,419)
(375,418)(376,417)(377,416)(378,415)(379,414)(380,413)(381,412)(382,411)
(383,410)(384,409)(385,408)(386,407)(387,406)(388,405)(389,404)(390,403)
(391,402)(392,401)(393,400)(394,399)(395,398);
s2 := Sym(474)!( 1,317)( 2,318)( 3,319)( 4,320)( 5,321)( 6,322)( 7,323)
( 8,324)( 9,325)( 10,326)( 11,327)( 12,328)( 13,329)( 14,330)( 15,331)
( 16,332)( 17,333)( 18,334)( 19,335)( 20,336)( 21,337)( 22,338)( 23,339)
( 24,340)( 25,341)( 26,342)( 27,343)( 28,344)( 29,345)( 30,346)( 31,347)
( 32,348)( 33,349)( 34,350)( 35,351)( 36,352)( 37,353)( 38,354)( 39,355)
( 40,356)( 41,357)( 42,358)( 43,359)( 44,360)( 45,361)( 46,362)( 47,363)
( 48,364)( 49,365)( 50,366)( 51,367)( 52,368)( 53,369)( 54,370)( 55,371)
( 56,372)( 57,373)( 58,374)( 59,375)( 60,376)( 61,377)( 62,378)( 63,379)
( 64,380)( 65,381)( 66,382)( 67,383)( 68,384)( 69,385)( 70,386)( 71,387)
( 72,388)( 73,389)( 74,390)( 75,391)( 76,392)( 77,393)( 78,394)( 79,395)
( 80,238)( 81,239)( 82,240)( 83,241)( 84,242)( 85,243)( 86,244)( 87,245)
( 88,246)( 89,247)( 90,248)( 91,249)( 92,250)( 93,251)( 94,252)( 95,253)
( 96,254)( 97,255)( 98,256)( 99,257)(100,258)(101,259)(102,260)(103,261)
(104,262)(105,263)(106,264)(107,265)(108,266)(109,267)(110,268)(111,269)
(112,270)(113,271)(114,272)(115,273)(116,274)(117,275)(118,276)(119,277)
(120,278)(121,279)(122,280)(123,281)(124,282)(125,283)(126,284)(127,285)
(128,286)(129,287)(130,288)(131,289)(132,290)(133,291)(134,292)(135,293)
(136,294)(137,295)(138,296)(139,297)(140,298)(141,299)(142,300)(143,301)
(144,302)(145,303)(146,304)(147,305)(148,306)(149,307)(150,308)(151,309)
(152,310)(153,311)(154,312)(155,313)(156,314)(157,315)(158,316)(159,396)
(160,397)(161,398)(162,399)(163,400)(164,401)(165,402)(166,403)(167,404)
(168,405)(169,406)(170,407)(171,408)(172,409)(173,410)(174,411)(175,412)
(176,413)(177,414)(178,415)(179,416)(180,417)(181,418)(182,419)(183,420)
(184,421)(185,422)(186,423)(187,424)(188,425)(189,426)(190,427)(191,428)
(192,429)(193,430)(194,431)(195,432)(196,433)(197,434)(198,435)(199,436)
(200,437)(201,438)(202,439)(203,440)(204,441)(205,442)(206,443)(207,444)
(208,445)(209,446)(210,447)(211,448)(212,449)(213,450)(214,451)(215,452)
(216,453)(217,454)(218,455)(219,456)(220,457)(221,458)(222,459)(223,460)
(224,461)(225,462)(226,463)(227,464)(228,465)(229,466)(230,467)(231,468)
(232,469)(233,470)(234,471)(235,472)(236,473)(237,474);
poly := sub<Sym(474)|s0,s1,s2>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2> := Group< s0,s1,s2 | s0*s0, s1*s1, s2*s2,
s0*s2*s0*s2, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1 >;
References : None.
to this polytope