include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,2,2,3,3}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,2,2,3,3}*192
if this polytope has a name.
Group : SmallGroup(192,1537)
Rank : 6
Schlafli Type : {2,2,2,3,3}
Number of vertices, edges, etc : 2, 2, 2, 4, 6, 4
Order of s0s1s2s3s4s5 : 4
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
{2,2,2,3,3,2} of size 384
{2,2,2,3,3,3} of size 960
{2,2,2,3,3,6} of size 1920
Vertex Figure Of :
{2,2,2,2,3,3} of size 384
{3,2,2,2,3,3} of size 576
{4,2,2,2,3,3} of size 768
{5,2,2,2,3,3} of size 960
{6,2,2,2,3,3} of size 1152
{7,2,2,2,3,3} of size 1344
{9,2,2,2,3,3} of size 1728
{10,2,2,2,3,3} of size 1920
Quotients (Maximal Quotients in Boldface) :
No Regular Quotients.
Covers (Minimal Covers in Boldface) :
2-fold covers : {2,4,2,3,3}*384, {4,2,2,3,3}*384, {2,2,2,3,6}*384, {2,2,2,6,3}*384
3-fold covers : {2,6,2,3,3}*576, {6,2,2,3,3}*576
4-fold covers : {4,4,2,3,3}*768, {2,2,4,3,3}*768, {2,8,2,3,3}*768, {8,2,2,3,3}*768, {2,2,4,6,3}*768, {2,4,2,3,6}*768, {2,4,2,6,3}*768, {4,2,2,3,6}*768, {4,2,2,6,3}*768, {2,2,2,3,12}*768, {2,2,2,12,3}*768, {2,2,2,6,6}*768
5-fold covers : {2,10,2,3,3}*960, {10,2,2,3,3}*960
6-fold covers : {2,12,2,3,3}*1152, {12,2,2,3,3}*1152, {4,6,2,3,3}*1152a, {6,4,2,3,3}*1152a, {2,2,2,3,6}*1152, {2,2,2,6,3}*1152, {2,2,6,6,3}*1152, {2,6,2,3,6}*1152, {2,6,2,6,3}*1152, {6,2,2,3,6}*1152, {6,2,2,6,3}*1152
7-fold covers : {2,14,2,3,3}*1344, {14,2,2,3,3}*1344
9-fold covers : {2,18,2,3,3}*1728, {18,2,2,3,3}*1728, {6,6,2,3,3}*1728a, {6,6,2,3,3}*1728b, {6,6,2,3,3}*1728c
10-fold covers : {2,20,2,3,3}*1920, {20,2,2,3,3}*1920, {4,10,2,3,3}*1920, {10,4,2,3,3}*1920, {2,2,2,6,15}*1920, {2,2,2,15,6}*1920, {2,2,10,6,3}*1920, {2,10,2,3,6}*1920, {2,10,2,6,3}*1920, {10,2,2,3,6}*1920, {10,2,2,6,3}*1920
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (3,4);;
s2 := (5,6);;
s3 := ( 9,10);;
s4 := (8,9);;
s5 := (7,8);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s1*s0*s1, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s3*s4*s3*s4*s3*s4, s4*s5*s4*s5*s4*s5 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(10)!(1,2);
s1 := Sym(10)!(3,4);
s2 := Sym(10)!(5,6);
s3 := Sym(10)!( 9,10);
s4 := Sym(10)!(8,9);
s5 := Sym(10)!(7,8);
poly := sub<Sym(10)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s1*s0*s1, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s3*s4*s3*s4*s3*s4,
s4*s5*s4*s5*s4*s5 >;
to this polytope