include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {4,8,2,15}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {4,8,2,15}*1920a
if this polytope has a name.
Group : SmallGroup(1920,148872)
Rank : 5
Schlafli Type : {4,8,2,15}
Number of vertices, edges, etc : 4, 16, 8, 15, 15
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,4,2,15}*960, {2,8,2,15}*960
3-fold quotients : {4,8,2,5}*640a
4-fold quotients : {2,4,2,15}*480, {4,2,2,15}*480
5-fold quotients : {4,8,2,3}*384a
6-fold quotients : {4,4,2,5}*320, {2,8,2,5}*320
8-fold quotients : {2,2,2,15}*240
10-fold quotients : {4,4,2,3}*192, {2,8,2,3}*192
12-fold quotients : {2,4,2,5}*160, {4,2,2,5}*160
20-fold quotients : {2,4,2,3}*96, {4,2,2,3}*96
24-fold quotients : {2,2,2,5}*80
40-fold quotients : {2,2,2,3}*48
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 2, 4)( 3, 6)(10,13)(12,15);;
s1 := ( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,10)(11,13)(12,14)(15,16);;
s2 := ( 2, 3)( 4, 6)( 5, 8)( 9,11)(10,12)(13,15);;
s3 := (18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);;
s4 := (17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1, s0*s1*s2*s1*s0*s1*s2*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!( 2, 4)( 3, 6)(10,13)(12,15);
s1 := Sym(31)!( 1, 2)( 3, 5)( 4, 7)( 6, 9)( 8,10)(11,13)(12,14)(15,16);
s2 := Sym(31)!( 2, 3)( 4, 6)( 5, 8)( 9,11)(10,12)(13,15);
s3 := Sym(31)!(18,19)(20,21)(22,23)(24,25)(26,27)(28,29)(30,31);
s4 := Sym(31)!(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30);
poly := sub<Sym(31)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1,
s0*s1*s2*s1*s0*s1*s2*s1, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope