include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,60,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,60,2}*1920b
if this polytope has a name.
Group : SmallGroup(1920,150666)
Rank : 4
Schlafli Type : {8,60,2}
Number of vertices, edges, etc : 8, 240, 60, 2
Order of s0s1s2s3 : 120
Order of s0s1s2s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,60,2}*960a
3-fold quotients : {8,20,2}*640b
4-fold quotients : {2,60,2}*480, {4,30,2}*480a
5-fold quotients : {8,12,2}*384b
6-fold quotients : {4,20,2}*320
8-fold quotients : {2,30,2}*240
10-fold quotients : {4,12,2}*192a
12-fold quotients : {2,20,2}*160, {4,10,2}*160
15-fold quotients : {8,4,2}*128b
16-fold quotients : {2,15,2}*120
20-fold quotients : {2,12,2}*96, {4,6,2}*96a
24-fold quotients : {2,10,2}*80
30-fold quotients : {4,4,2}*64
40-fold quotients : {2,6,2}*48
48-fold quotients : {2,5,2}*40
60-fold quotients : {2,4,2}*32, {4,2,2}*32
80-fold quotients : {2,3,2}*24
120-fold quotients : {2,2,2}*16
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)( 38, 53)
( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)( 61, 76)
( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)
( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)(121,151)(122,152)
(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)(130,160)
(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)(138,168)
(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)(146,176)
(147,177)(148,178)(149,179)(150,180)(181,226)(182,227)(183,228)(184,229)
(185,230)(186,231)(187,232)(188,233)(189,234)(190,235)(191,236)(192,237)
(193,238)(194,239)(195,240)(196,211)(197,212)(198,213)(199,214)(200,215)
(201,216)(202,217)(203,218)(204,219)(205,220)(206,221)(207,222)(208,223)
(209,224)(210,225);;
s1 := ( 1,121)( 2,125)( 3,124)( 4,123)( 5,122)( 6,131)( 7,135)( 8,134)
( 9,133)( 10,132)( 11,126)( 12,130)( 13,129)( 14,128)( 15,127)( 16,136)
( 17,140)( 18,139)( 19,138)( 20,137)( 21,146)( 22,150)( 23,149)( 24,148)
( 25,147)( 26,141)( 27,145)( 28,144)( 29,143)( 30,142)( 31,166)( 32,170)
( 33,169)( 34,168)( 35,167)( 36,176)( 37,180)( 38,179)( 39,178)( 40,177)
( 41,171)( 42,175)( 43,174)( 44,173)( 45,172)( 46,151)( 47,155)( 48,154)
( 49,153)( 50,152)( 51,161)( 52,165)( 53,164)( 54,163)( 55,162)( 56,156)
( 57,160)( 58,159)( 59,158)( 60,157)( 61,181)( 62,185)( 63,184)( 64,183)
( 65,182)( 66,191)( 67,195)( 68,194)( 69,193)( 70,192)( 71,186)( 72,190)
( 73,189)( 74,188)( 75,187)( 76,196)( 77,200)( 78,199)( 79,198)( 80,197)
( 81,206)( 82,210)( 83,209)( 84,208)( 85,207)( 86,201)( 87,205)( 88,204)
( 89,203)( 90,202)( 91,226)( 92,230)( 93,229)( 94,228)( 95,227)( 96,236)
( 97,240)( 98,239)( 99,238)(100,237)(101,231)(102,235)(103,234)(104,233)
(105,232)(106,211)(107,215)(108,214)(109,213)(110,212)(111,221)(112,225)
(113,224)(114,223)(115,222)(116,216)(117,220)(118,219)(119,218)(120,217);;
s2 := ( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)( 16, 22)
( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 52)( 32, 51)
( 33, 55)( 34, 54)( 35, 53)( 36, 47)( 37, 46)( 38, 50)( 39, 49)( 40, 48)
( 41, 57)( 42, 56)( 43, 60)( 44, 59)( 45, 58)( 61, 67)( 62, 66)( 63, 70)
( 64, 69)( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)( 79, 84)
( 80, 83)( 86, 87)( 88, 90)( 91,112)( 92,111)( 93,115)( 94,114)( 95,113)
( 96,107)( 97,106)( 98,110)( 99,109)(100,108)(101,117)(102,116)(103,120)
(104,119)(105,118)(121,187)(122,186)(123,190)(124,189)(125,188)(126,182)
(127,181)(128,185)(129,184)(130,183)(131,192)(132,191)(133,195)(134,194)
(135,193)(136,202)(137,201)(138,205)(139,204)(140,203)(141,197)(142,196)
(143,200)(144,199)(145,198)(146,207)(147,206)(148,210)(149,209)(150,208)
(151,232)(152,231)(153,235)(154,234)(155,233)(156,227)(157,226)(158,230)
(159,229)(160,228)(161,237)(162,236)(163,240)(164,239)(165,238)(166,217)
(167,216)(168,220)(169,219)(170,218)(171,212)(172,211)(173,215)(174,214)
(175,213)(176,222)(177,221)(178,225)(179,224)(180,223);;
s3 := (241,242);;
poly := Group([s0,s1,s2,s3]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s2*s0*s1*s0*s1*s2*s0*s1*s0*s1, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(242)!( 31, 46)( 32, 47)( 33, 48)( 34, 49)( 35, 50)( 36, 51)( 37, 52)
( 38, 53)( 39, 54)( 40, 55)( 41, 56)( 42, 57)( 43, 58)( 44, 59)( 45, 60)
( 61, 76)( 62, 77)( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)
( 69, 84)( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)(121,151)
(122,152)(123,153)(124,154)(125,155)(126,156)(127,157)(128,158)(129,159)
(130,160)(131,161)(132,162)(133,163)(134,164)(135,165)(136,166)(137,167)
(138,168)(139,169)(140,170)(141,171)(142,172)(143,173)(144,174)(145,175)
(146,176)(147,177)(148,178)(149,179)(150,180)(181,226)(182,227)(183,228)
(184,229)(185,230)(186,231)(187,232)(188,233)(189,234)(190,235)(191,236)
(192,237)(193,238)(194,239)(195,240)(196,211)(197,212)(198,213)(199,214)
(200,215)(201,216)(202,217)(203,218)(204,219)(205,220)(206,221)(207,222)
(208,223)(209,224)(210,225);
s1 := Sym(242)!( 1,121)( 2,125)( 3,124)( 4,123)( 5,122)( 6,131)( 7,135)
( 8,134)( 9,133)( 10,132)( 11,126)( 12,130)( 13,129)( 14,128)( 15,127)
( 16,136)( 17,140)( 18,139)( 19,138)( 20,137)( 21,146)( 22,150)( 23,149)
( 24,148)( 25,147)( 26,141)( 27,145)( 28,144)( 29,143)( 30,142)( 31,166)
( 32,170)( 33,169)( 34,168)( 35,167)( 36,176)( 37,180)( 38,179)( 39,178)
( 40,177)( 41,171)( 42,175)( 43,174)( 44,173)( 45,172)( 46,151)( 47,155)
( 48,154)( 49,153)( 50,152)( 51,161)( 52,165)( 53,164)( 54,163)( 55,162)
( 56,156)( 57,160)( 58,159)( 59,158)( 60,157)( 61,181)( 62,185)( 63,184)
( 64,183)( 65,182)( 66,191)( 67,195)( 68,194)( 69,193)( 70,192)( 71,186)
( 72,190)( 73,189)( 74,188)( 75,187)( 76,196)( 77,200)( 78,199)( 79,198)
( 80,197)( 81,206)( 82,210)( 83,209)( 84,208)( 85,207)( 86,201)( 87,205)
( 88,204)( 89,203)( 90,202)( 91,226)( 92,230)( 93,229)( 94,228)( 95,227)
( 96,236)( 97,240)( 98,239)( 99,238)(100,237)(101,231)(102,235)(103,234)
(104,233)(105,232)(106,211)(107,215)(108,214)(109,213)(110,212)(111,221)
(112,225)(113,224)(114,223)(115,222)(116,216)(117,220)(118,219)(119,218)
(120,217);
s2 := Sym(242)!( 1, 7)( 2, 6)( 3, 10)( 4, 9)( 5, 8)( 11, 12)( 13, 15)
( 16, 22)( 17, 21)( 18, 25)( 19, 24)( 20, 23)( 26, 27)( 28, 30)( 31, 52)
( 32, 51)( 33, 55)( 34, 54)( 35, 53)( 36, 47)( 37, 46)( 38, 50)( 39, 49)
( 40, 48)( 41, 57)( 42, 56)( 43, 60)( 44, 59)( 45, 58)( 61, 67)( 62, 66)
( 63, 70)( 64, 69)( 65, 68)( 71, 72)( 73, 75)( 76, 82)( 77, 81)( 78, 85)
( 79, 84)( 80, 83)( 86, 87)( 88, 90)( 91,112)( 92,111)( 93,115)( 94,114)
( 95,113)( 96,107)( 97,106)( 98,110)( 99,109)(100,108)(101,117)(102,116)
(103,120)(104,119)(105,118)(121,187)(122,186)(123,190)(124,189)(125,188)
(126,182)(127,181)(128,185)(129,184)(130,183)(131,192)(132,191)(133,195)
(134,194)(135,193)(136,202)(137,201)(138,205)(139,204)(140,203)(141,197)
(142,196)(143,200)(144,199)(145,198)(146,207)(147,206)(148,210)(149,209)
(150,208)(151,232)(152,231)(153,235)(154,234)(155,233)(156,227)(157,226)
(158,230)(159,229)(160,228)(161,237)(162,236)(163,240)(164,239)(165,238)
(166,217)(167,216)(168,220)(169,219)(170,218)(171,212)(172,211)(173,215)
(174,214)(175,213)(176,222)(177,221)(178,225)(179,224)(180,223);
s3 := Sym(242)!(241,242);
poly := sub<Sym(242)|s0,s1,s2,s3>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3> := Group< s0,s1,s2,s3 | s0*s0, s1*s1, s2*s2,
s3*s3, s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s2*s0*s1*s0*s1*s2*s0*s1*s0*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope