Polytope of Type {2,4,12,10}

This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,4,12,10}*1920a
if this polytope has a name.
Group : SmallGroup(1920,205032)
Rank : 5
Schlafli Type : {2,4,12,10}
Number of vertices, edges, etc : 2, 4, 24, 60, 10
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
   Degenerate
   Universal
   Orientable
   Flat
Related Polytopes :
   Facet
   Vertex Figure
   Dual
Facet Of :
   None in this Atlas
Vertex Figure Of :
   None in this Atlas
Quotients (Maximal Quotients in Boldface) :
   2-fold quotients : {2,2,12,10}*960, {2,4,6,10}*960a
   3-fold quotients : {2,4,4,10}*640
   4-fold quotients : {2,2,6,10}*480
   5-fold quotients : {2,4,12,2}*384a
   6-fold quotients : {2,2,4,10}*320, {2,4,2,10}*320
   10-fold quotients : {2,2,12,2}*192, {2,4,6,2}*192a
   12-fold quotients : {2,4,2,5}*160, {2,2,2,10}*160
   15-fold quotients : {2,4,4,2}*128
   20-fold quotients : {2,2,6,2}*96
   24-fold quotients : {2,2,2,5}*80
   30-fold quotients : {2,2,4,2}*64, {2,4,2,2}*64
   40-fold quotients : {2,2,3,2}*48
   60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
   None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)( 70, 85)
( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 76, 91)( 77, 92)( 93,108)
( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)(101,116)
(102,117)(103,118)(104,119)(105,120)(106,121)(107,122);;
s2 := (  3, 63)(  4, 64)(  5, 65)(  6, 66)(  7, 67)(  8, 73)(  9, 74)( 10, 75)
( 11, 76)( 12, 77)( 13, 68)( 14, 69)( 15, 70)( 16, 71)( 17, 72)( 18, 78)
( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 88)( 24, 89)( 25, 90)( 26, 91)
( 27, 92)( 28, 83)( 29, 84)( 30, 85)( 31, 86)( 32, 87)( 33, 93)( 34, 94)
( 35, 95)( 36, 96)( 37, 97)( 38,103)( 39,104)( 40,105)( 41,106)( 42,107)
( 43, 98)( 44, 99)( 45,100)( 46,101)( 47,102)( 48,108)( 49,109)( 50,110)
( 51,111)( 52,112)( 53,118)( 54,119)( 55,120)( 56,121)( 57,122)( 58,113)
( 59,114)( 60,115)( 61,116)( 62,117);;
s3 := (  3,  8)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 17)( 15, 16)( 18, 23)
( 19, 27)( 20, 26)( 21, 25)( 22, 24)( 29, 32)( 30, 31)( 33, 38)( 34, 42)
( 35, 41)( 36, 40)( 37, 39)( 44, 47)( 45, 46)( 48, 53)( 49, 57)( 50, 56)
( 51, 55)( 52, 54)( 59, 62)( 60, 61)( 63, 98)( 64,102)( 65,101)( 66,100)
( 67, 99)( 68, 93)( 69, 97)( 70, 96)( 71, 95)( 72, 94)( 73,103)( 74,107)
( 75,106)( 76,105)( 77,104)( 78,113)( 79,117)( 80,116)( 81,115)( 82,114)
( 83,108)( 84,112)( 85,111)( 86,110)( 87,109)( 88,118)( 89,122)( 90,121)
( 91,120)( 92,119);;
s4 := (  3,  4)(  5,  7)(  8,  9)( 10, 12)( 13, 14)( 15, 17)( 18, 19)( 20, 22)
( 23, 24)( 25, 27)( 28, 29)( 30, 32)( 33, 34)( 35, 37)( 38, 39)( 40, 42)
( 43, 44)( 45, 47)( 48, 49)( 50, 52)( 53, 54)( 55, 57)( 58, 59)( 60, 62)
( 63, 64)( 65, 67)( 68, 69)( 70, 72)( 73, 74)( 75, 77)( 78, 79)( 80, 82)
( 83, 84)( 85, 87)( 88, 89)( 90, 92)( 93, 94)( 95, 97)( 98, 99)(100,102)
(103,104)(105,107)(108,109)(110,112)(113,114)(115,117)(118,119)(120,122);;
poly := Group([s0,s1,s2,s3,s4]);;
 
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;;  s1 := F.2;;  s2 := F.3;;  s3 := F.4;;  s4 := F.5;;  
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1, 
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3, 
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4, 
s1*s2*s1*s2*s1*s2*s1*s2, s1*s2*s3*s2*s1*s2*s3*s2, 
s2*s3*s4*s3*s2*s3*s4*s3, s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 ];;
poly := F / rels;;
 
Permutation Representation (Magma) :
s0 := Sym(122)!(1,2);
s1 := Sym(122)!( 63, 78)( 64, 79)( 65, 80)( 66, 81)( 67, 82)( 68, 83)( 69, 84)
( 70, 85)( 71, 86)( 72, 87)( 73, 88)( 74, 89)( 75, 90)( 76, 91)( 77, 92)
( 93,108)( 94,109)( 95,110)( 96,111)( 97,112)( 98,113)( 99,114)(100,115)
(101,116)(102,117)(103,118)(104,119)(105,120)(106,121)(107,122);
s2 := Sym(122)!(  3, 63)(  4, 64)(  5, 65)(  6, 66)(  7, 67)(  8, 73)(  9, 74)
( 10, 75)( 11, 76)( 12, 77)( 13, 68)( 14, 69)( 15, 70)( 16, 71)( 17, 72)
( 18, 78)( 19, 79)( 20, 80)( 21, 81)( 22, 82)( 23, 88)( 24, 89)( 25, 90)
( 26, 91)( 27, 92)( 28, 83)( 29, 84)( 30, 85)( 31, 86)( 32, 87)( 33, 93)
( 34, 94)( 35, 95)( 36, 96)( 37, 97)( 38,103)( 39,104)( 40,105)( 41,106)
( 42,107)( 43, 98)( 44, 99)( 45,100)( 46,101)( 47,102)( 48,108)( 49,109)
( 50,110)( 51,111)( 52,112)( 53,118)( 54,119)( 55,120)( 56,121)( 57,122)
( 58,113)( 59,114)( 60,115)( 61,116)( 62,117);
s3 := Sym(122)!(  3,  8)(  4, 12)(  5, 11)(  6, 10)(  7,  9)( 14, 17)( 15, 16)
( 18, 23)( 19, 27)( 20, 26)( 21, 25)( 22, 24)( 29, 32)( 30, 31)( 33, 38)
( 34, 42)( 35, 41)( 36, 40)( 37, 39)( 44, 47)( 45, 46)( 48, 53)( 49, 57)
( 50, 56)( 51, 55)( 52, 54)( 59, 62)( 60, 61)( 63, 98)( 64,102)( 65,101)
( 66,100)( 67, 99)( 68, 93)( 69, 97)( 70, 96)( 71, 95)( 72, 94)( 73,103)
( 74,107)( 75,106)( 76,105)( 77,104)( 78,113)( 79,117)( 80,116)( 81,115)
( 82,114)( 83,108)( 84,112)( 85,111)( 86,110)( 87,109)( 88,118)( 89,122)
( 90,121)( 91,120)( 92,119);
s4 := Sym(122)!(  3,  4)(  5,  7)(  8,  9)( 10, 12)( 13, 14)( 15, 17)( 18, 19)
( 20, 22)( 23, 24)( 25, 27)( 28, 29)( 30, 32)( 33, 34)( 35, 37)( 38, 39)
( 40, 42)( 43, 44)( 45, 47)( 48, 49)( 50, 52)( 53, 54)( 55, 57)( 58, 59)
( 60, 62)( 63, 64)( 65, 67)( 68, 69)( 70, 72)( 73, 74)( 75, 77)( 78, 79)
( 80, 82)( 83, 84)( 85, 87)( 88, 89)( 90, 92)( 93, 94)( 95, 97)( 98, 99)
(100,102)(103,104)(105,107)(108,109)(110,112)(113,114)(115,117)(118,119)
(120,122);
poly := sub<Sym(122)|s0,s1,s2,s3,s4>;
 
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2, 
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2, 
s0*s3*s0*s3, s1*s3*s1*s3, s0*s4*s0*s4, 
s1*s4*s1*s4, s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2, 
s1*s2*s3*s2*s1*s2*s3*s2, s2*s3*s4*s3*s2*s3*s4*s3, 
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4, 
s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3*s2*s3 >; 
 

to this polytope