include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,12,2,20}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,12,2,20}*1920
if this polytope has a name.
Group : SmallGroup(1920,208164)
Rank : 5
Schlafli Type : {2,12,2,20}
Number of vertices, edges, etc : 2, 12, 12, 20, 20
Order of s0s1s2s3s4 : 60
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,12,2,10}*960, {2,6,2,20}*960
3-fold quotients : {2,4,2,20}*640
4-fold quotients : {2,12,2,5}*480, {2,3,2,20}*480, {2,6,2,10}*480
5-fold quotients : {2,12,2,4}*384
6-fold quotients : {2,2,2,20}*320, {2,4,2,10}*320
8-fold quotients : {2,3,2,10}*240, {2,6,2,5}*240
10-fold quotients : {2,12,2,2}*192, {2,6,2,4}*192
12-fold quotients : {2,4,2,5}*160, {2,2,2,10}*160
15-fold quotients : {2,4,2,4}*128
16-fold quotients : {2,3,2,5}*120
20-fold quotients : {2,3,2,4}*96, {2,6,2,2}*96
24-fold quotients : {2,2,2,5}*80
30-fold quotients : {2,2,2,4}*64, {2,4,2,2}*64
40-fold quotients : {2,3,2,2}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := ( 4, 5)( 6, 7)( 9,12)(10,11)(13,14);;
s2 := ( 3, 9)( 4, 6)( 5,13)( 7,10)( 8,11)(12,14);;
s3 := (16,17)(18,19)(21,24)(22,23)(25,26)(27,28)(29,32)(30,31)(33,34);;
s4 := (15,21)(16,18)(17,27)(19,29)(20,23)(22,25)(24,33)(26,30)(28,31)(32,34);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(34)!(1,2);
s1 := Sym(34)!( 4, 5)( 6, 7)( 9,12)(10,11)(13,14);
s2 := Sym(34)!( 3, 9)( 4, 6)( 5,13)( 7,10)( 8,11)(12,14);
s3 := Sym(34)!(16,17)(18,19)(21,24)(22,23)(25,26)(27,28)(29,32)(30,31)(33,34);
s4 := Sym(34)!(15,21)(16,18)(17,27)(19,29)(20,23)(22,25)(24,33)(26,30)(28,31)
(32,34);
poly := sub<Sym(34)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope