include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {2,8,2,30}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {2,8,2,30}*1920
if this polytope has a name.
Group : SmallGroup(1920,235336)
Rank : 5
Schlafli Type : {2,8,2,30}
Number of vertices, edges, etc : 2, 8, 8, 30, 30
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {2,8,2,15}*960, {2,4,2,30}*960
3-fold quotients : {2,8,2,10}*640
4-fold quotients : {2,4,2,15}*480, {2,2,2,30}*480
5-fold quotients : {2,8,2,6}*384
6-fold quotients : {2,8,2,5}*320, {2,4,2,10}*320
8-fold quotients : {2,2,2,15}*240
10-fold quotients : {2,8,2,3}*192, {2,4,2,6}*192
12-fold quotients : {2,4,2,5}*160, {2,2,2,10}*160
15-fold quotients : {2,8,2,2}*128
20-fold quotients : {2,4,2,3}*96, {2,2,2,6}*96
24-fold quotients : {2,2,2,5}*80
30-fold quotients : {2,4,2,2}*64
40-fold quotients : {2,2,2,3}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (1,2);;
s1 := (4,5)(6,7)(8,9);;
s2 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s3 := (13,14)(15,16)(17,18)(19,20)(21,24)(22,23)(25,26)(27,30)(28,29)(31,32)
(33,36)(34,35)(37,40)(38,39);;
s4 := (11,27)(12,21)(13,19)(14,29)(15,17)(16,37)(18,23)(20,33)(22,31)(24,39)
(25,28)(26,38)(30,35)(32,34)(36,40);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s1*s0*s1,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(40)!(1,2);
s1 := Sym(40)!(4,5)(6,7)(8,9);
s2 := Sym(40)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s3 := Sym(40)!(13,14)(15,16)(17,18)(19,20)(21,24)(22,23)(25,26)(27,30)(28,29)
(31,32)(33,36)(34,35)(37,40)(38,39);
s4 := Sym(40)!(11,27)(12,21)(13,19)(14,29)(15,17)(16,37)(18,23)(20,33)(22,31)
(24,39)(25,28)(26,38)(30,35)(32,34)(36,40);
poly := sub<Sym(40)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s1*s0*s1, s0*s2*s0*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope