include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {3,2,2,10,8}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {3,2,2,10,8}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 6
Schlafli Type : {3,2,2,10,8}
Number of vertices, edges, etc : 3, 3, 2, 10, 40, 8
Order of s0s1s2s3s4s5 : 120
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {3,2,2,10,4}*960
4-fold quotients : {3,2,2,10,2}*480
5-fold quotients : {3,2,2,2,8}*384
8-fold quotients : {3,2,2,5,2}*240
10-fold quotients : {3,2,2,2,4}*192
20-fold quotients : {3,2,2,2,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3);;
s1 := (1,2);;
s2 := (4,5);;
s3 := ( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)
(32,35)(33,34)(37,40)(38,39)(42,45)(43,44);;
s4 := ( 6, 7)( 8,10)(11,12)(13,15)(16,22)(17,21)(18,25)(19,24)(20,23)(26,42)
(27,41)(28,45)(29,44)(30,43)(31,37)(32,36)(33,40)(34,39)(35,38);;
s5 := ( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)
(16,41)(17,42)(18,43)(19,44)(20,45)(21,36)(22,37)(23,38)(24,39)(25,40);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s0*s1*s0*s1*s0*s1, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(45)!(2,3);
s1 := Sym(45)!(1,2);
s2 := Sym(45)!(4,5);
s3 := Sym(45)!( 7,10)( 8, 9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)
(28,29)(32,35)(33,34)(37,40)(38,39)(42,45)(43,44);
s4 := Sym(45)!( 6, 7)( 8,10)(11,12)(13,15)(16,22)(17,21)(18,25)(19,24)(20,23)
(26,42)(27,41)(28,45)(29,44)(30,43)(31,37)(32,36)(33,40)(34,39)(35,38);
s5 := Sym(45)!( 6,26)( 7,27)( 8,28)( 9,29)(10,30)(11,31)(12,32)(13,33)(14,34)
(15,35)(16,41)(17,42)(18,43)(19,44)(20,45)(21,36)(22,37)(23,38)(24,39)(25,40);
poly := sub<Sym(45)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s0*s1*s0*s1*s0*s1, s3*s4*s5*s4*s3*s4*s5*s4,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope