include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {5,2,2,8,6}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {5,2,2,8,6}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 6
Schlafli Type : {5,2,2,8,6}
Number of vertices, edges, etc : 5, 5, 2, 8, 24, 6
Order of s0s1s2s3s4s5 : 120
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,2,4,6}*960a
3-fold quotients : {5,2,2,8,2}*640
4-fold quotients : {5,2,2,2,6}*480
6-fold quotients : {5,2,2,4,2}*320
8-fold quotients : {5,2,2,2,3}*240
12-fold quotients : {5,2,2,2,2}*160
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (2,3)(4,5);;
s1 := (1,2)(3,4);;
s2 := (6,7);;
s3 := ( 9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29);;
s4 := ( 8, 9)(10,14)(11,13)(12,15)(16,20)(17,19)(18,21)(22,26)(23,25)(24,27)
(28,31)(29,30);;
s5 := ( 8,10)( 9,13)(12,16)(15,19)(18,22)(21,25)(24,28)(27,30);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s1*s2*s1*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s3*s4*s5*s4*s3*s4*s5*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(31)!(2,3)(4,5);
s1 := Sym(31)!(1,2)(3,4);
s2 := Sym(31)!(6,7);
s3 := Sym(31)!( 9,12)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29);
s4 := Sym(31)!( 8, 9)(10,14)(11,13)(12,15)(16,20)(17,19)(18,21)(22,26)(23,25)
(24,27)(28,31)(29,30);
s5 := Sym(31)!( 8,10)( 9,13)(12,16)(15,19)(18,22)(21,25)(24,28)(27,30);
poly := sub<Sym(31)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s5*s0*s5, s1*s5*s1*s5, s2*s5*s2*s5,
s3*s5*s3*s5, s3*s4*s5*s4*s3*s4*s5*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1, s4*s5*s4*s5*s4*s5*s4*s5*s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope