include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {8,10,2,3,2}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {8,10,2,3,2}*1920
if this polytope has a name.
Group : SmallGroup(1920,235343)
Rank : 6
Schlafli Type : {8,10,2,3,2}
Number of vertices, edges, etc : 8, 40, 10, 3, 3, 2
Order of s0s1s2s3s4s5 : 120
Order of s0s1s2s3s4s5s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {4,10,2,3,2}*960
4-fold quotients : {2,10,2,3,2}*480
5-fold quotients : {8,2,2,3,2}*384
8-fold quotients : {2,5,2,3,2}*240
10-fold quotients : {4,2,2,3,2}*192
20-fold quotients : {2,2,2,3,2}*96
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := (11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)
(26,31)(27,32)(28,33)(29,34)(30,35);;
s1 := ( 1,21)( 2,25)( 3,24)( 4,23)( 5,22)( 6,26)( 7,30)( 8,29)( 9,28)(10,27)
(11,36)(12,40)(13,39)(14,38)(15,37)(16,31)(17,35)(18,34)(19,33)(20,32);;
s2 := ( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)(23,25)
(26,27)(28,30)(31,32)(33,35)(36,37)(38,40);;
s3 := (42,43);;
s4 := (41,42);;
s5 := (44,45);;
poly := Group([s0,s1,s2,s3,s4,s5]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4","s5");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;; s5 := F.6;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s5*s5,
s0*s2*s0*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s5*s0*s5, s1*s5*s1*s5,
s2*s5*s2*s5, s3*s5*s3*s5, s4*s5*s4*s5,
s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(45)!(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)
(25,40)(26,31)(27,32)(28,33)(29,34)(30,35);
s1 := Sym(45)!( 1,21)( 2,25)( 3,24)( 4,23)( 5,22)( 6,26)( 7,30)( 8,29)( 9,28)
(10,27)(11,36)(12,40)(13,39)(14,38)(15,37)(16,31)(17,35)(18,34)(19,33)(20,32);
s2 := Sym(45)!( 1, 2)( 3, 5)( 6, 7)( 8,10)(11,12)(13,15)(16,17)(18,20)(21,22)
(23,25)(26,27)(28,30)(31,32)(33,35)(36,37)(38,40);
s3 := Sym(45)!(42,43);
s4 := Sym(45)!(41,42);
s5 := Sym(45)!(44,45);
poly := sub<Sym(45)|s0,s1,s2,s3,s4,s5>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4,s5> := Group< s0,s1,s2,s3,s4,s5 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s5*s5, s0*s2*s0*s2, s0*s3*s0*s3,
s1*s3*s1*s3, s2*s3*s2*s3, s0*s4*s0*s4,
s1*s4*s1*s4, s2*s4*s2*s4, s0*s5*s0*s5,
s1*s5*s1*s5, s2*s5*s2*s5, s3*s5*s3*s5,
s4*s5*s4*s5, s3*s4*s3*s4*s3*s4, s0*s1*s2*s1*s0*s1*s2*s1,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2*s1*s2 >;
to this polytope