include("/home/bitnami/htdocs/websites/abstract-polytopes/www/subs.php"); ?>
Polytope of Type {10,2,2,24}
This page is part of the Atlas of Small Regular Polytopes
Atlas Canonical Name : {10,2,2,24}*1920
if this polytope has a name.
Group : SmallGroup(1920,235347)
Rank : 5
Schlafli Type : {10,2,2,24}
Number of vertices, edges, etc : 10, 10, 2, 24, 24
Order of s0s1s2s3s4 : 120
Order of s0s1s2s3s4s3s2s1 : 2
Special Properties :
Degenerate
Universal
Orientable
Flat
Related Polytopes :
Facet
Vertex Figure
Dual
Facet Of :
None in this Atlas
Vertex Figure Of :
None in this Atlas
Quotients (Maximal Quotients in Boldface) :
2-fold quotients : {5,2,2,24}*960, {10,2,2,12}*960
3-fold quotients : {10,2,2,8}*640
4-fold quotients : {5,2,2,12}*480, {10,2,2,6}*480
5-fold quotients : {2,2,2,24}*384
6-fold quotients : {5,2,2,8}*320, {10,2,2,4}*320
8-fold quotients : {5,2,2,6}*240, {10,2,2,3}*240
10-fold quotients : {2,2,2,12}*192
12-fold quotients : {5,2,2,4}*160, {10,2,2,2}*160
15-fold quotients : {2,2,2,8}*128
16-fold quotients : {5,2,2,3}*120
20-fold quotients : {2,2,2,6}*96
24-fold quotients : {5,2,2,2}*80
30-fold quotients : {2,2,2,4}*64
40-fold quotients : {2,2,2,3}*48
60-fold quotients : {2,2,2,2}*32
Covers (Minimal Covers in Boldface) :
None in this atlas.
Permutation Representation (GAP) :
s0 := ( 3, 4)( 5, 6)( 7, 8)( 9,10);;
s1 := ( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);;
s2 := (11,12);;
s3 := (14,15)(16,17)(18,21)(19,23)(20,22)(24,27)(25,29)(26,28)(31,34)(32,33)
(35,36);;
s4 := (13,19)(14,16)(15,25)(17,20)(18,22)(21,31)(23,26)(24,28)(27,35)(29,32)
(30,33)(34,36);;
poly := Group([s0,s1,s2,s3,s4]);;
Finitely Presented Group Representation (GAP) :
F := FreeGroup("s0","s1","s2","s3","s4");;
s0 := F.1;; s1 := F.2;; s2 := F.3;; s3 := F.4;; s4 := F.5;;
rels := [ s0*s0, s1*s1, s2*s2, s3*s3, s4*s4, s0*s2*s0*s2,
s1*s2*s1*s2, s0*s3*s0*s3, s1*s3*s1*s3,
s2*s3*s2*s3, s0*s4*s0*s4, s1*s4*s1*s4,
s2*s4*s2*s4, s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 ];;
poly := F / rels;;
Permutation Representation (Magma) :
s0 := Sym(36)!( 3, 4)( 5, 6)( 7, 8)( 9,10);
s1 := Sym(36)!( 1, 5)( 2, 3)( 4, 9)( 6, 7)( 8,10);
s2 := Sym(36)!(11,12);
s3 := Sym(36)!(14,15)(16,17)(18,21)(19,23)(20,22)(24,27)(25,29)(26,28)(31,34)
(32,33)(35,36);
s4 := Sym(36)!(13,19)(14,16)(15,25)(17,20)(18,22)(21,31)(23,26)(24,28)(27,35)
(29,32)(30,33)(34,36);
poly := sub<Sym(36)|s0,s1,s2,s3,s4>;
Finitely Presented Group Representation (Magma) :
poly<s0,s1,s2,s3,s4> := Group< s0,s1,s2,s3,s4 | s0*s0, s1*s1, s2*s2,
s3*s3, s4*s4, s0*s2*s0*s2, s1*s2*s1*s2,
s0*s3*s0*s3, s1*s3*s1*s3, s2*s3*s2*s3,
s0*s4*s0*s4, s1*s4*s1*s4, s2*s4*s2*s4,
s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1*s0*s1,
s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4*s3*s4 >;
to this polytope